High-Dimensional Model Selection


[Up] [Top]

Documentation for package ‘modelSelection’ version 1.0.3

Help Pages

A B C D E G I L M N P Q R S U Z

-- A --

aic Class "msPriorSpec"

-- B --

bbPrior Priors on model space for variable selection problems
bestAIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestBIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestEBIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bfnormmix Number of Normal mixture components under Normal-IW and Non-local priors
bic Class "msPriorSpec"
bicprior Class "msPriorSpec"
binomPrior Priors on model space for variable selection problems

-- C --

cil Treatment effect estimation for linear models via Confounder Importance Learning using non-local priors.
coef.mixturebf Class "mixturebf"
coefByModel Class "msfit"
coefByModel-method Class "msfit"
coefByModel-methods Class "msfit"

-- D --

dalapl Density and random draws from the asymmetric Laplace distribution
ddir Dirichlet density
demom Non-local prior density, cdf and quantile functions.
demom-method Non-local prior density, cdf and quantile functions.
demom-methods Non-local prior density, cdf and quantile functions.
demomigmarg Non-local prior density, cdf and quantile functions.
dimom Non-local prior density, cdf and quantile functions.
diwish Density for Inverse Wishart distribution
dmom Non-local prior density, cdf and quantile functions.
dmomigmarg Non-local prior density, cdf and quantile functions.
dpostNIW Posterior Normal-IWishart density

-- E --

emomprior Class "msPriorSpec"
eprod Expectation of a product of powers of Normal or T random variables
exponentialprior Class "msPriorSpec"

-- G --

groupemomprior Class "msPriorSpec"
groupimomprior Class "msPriorSpec"
groupmomprior Class "msPriorSpec"
groupzellnerprior Class "msPriorSpec"

-- I --

ic Class "msPriorSpec"
icarplusprior Class "msPriorSpec"
icfit Class "icfit"
icfit-class Class "icfit"
icfit.coef Class "icfit"
icfit.predict Class "icfit"
icfit.summary Class "icfit"
icov Extract estimated inverse covariance
igprior Class "msPriorSpec"
imomprior Class "msPriorSpec"

-- L --

localnulltest Local variable selection
localnulltest_fda Local variable selection
localnulltest_fda_givenknots Local variable selection
localnulltest_givenknots Local variable selection

-- M --

marginalLikelihood Marginal (or integrated) likelihood density of the observed data for an individual model handled by modelSelection (regression, GLM, GAM, accelerated failure time, regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals
marginalNIW Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
marginalNIW-method Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
marginalNIW-methods Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
mixturebf Class "mixturebf"
mixturebf-class Class "mixturebf"
modelbbprior Class "msPriorSpec"
modelbinomprior Class "msPriorSpec"
modelcomplexprior Class "msPriorSpec"
modelsearchBlockDiag Bayesian variable selection for generalized linear and generalized additive models.
modelSelection Bayesian variable selection for generalized linear and generalized additive models.
modelSelectionGGM Bayesian variable selection for linear models via non-local priors.
modelSelection_eBayes Bayesian variable selection for generalized linear and generalized additive models.
modelunifprior Class "msPriorSpec"
momprior Class "msPriorSpec"
msfit Class "msfit"
msfit-class Class "msfit"
msfit.coef Class "msfit"
msfit.plot Class "msfit"
msfit.predict Class "msfit"
msfit_ggm Class "msfit_ggm"
msfit_ggm-class Class "msfit_ggm"
msfit_ggm.coef Class "msfit_ggm"
msPriorSpec Class "msPriorSpec"
msPriorSpec-class Class "msPriorSpec"

-- N --

normalidprior Class "msPriorSpec"

-- P --

palapl Density and random draws from the asymmetric Laplace distribution
pemom Non-local prior density, cdf and quantile functions.
pemomigmarg Non-local prior density, cdf and quantile functions.
pimom Non-local prior density, cdf and quantile functions.
plotprior Plot estimated marginal prior inclusion probabilities
plotprior-method Plot estimated marginal prior inclusion probabilities
plotprior-methods Plot estimated marginal prior inclusion probabilities
pmom Non-local prior density, cdf and quantile functions.
pmomigmarg Non-local prior density, cdf and quantile functions.
postProb Obtain posterior model probabilities
postProb-method Obtain posterior model probabilities
postProb-methods Obtain posterior model probabilities
postSamples Extract posterior samples from an object
postSamples-method Extract posterior samples from an object
postSamples-methods Extract posterior samples from an object
priorp2g Moment and inverse moment prior elicitation

-- Q --

qimom Non-local prior density, cdf and quantile functions.
qmom Non-local prior density, cdf and quantile functions.

-- R --

ralapl Density and random draws from the asymmetric Laplace distribution
rnlp Posterior sampling for regression parameters
rnlp-method Posterior sampling for regression parameters
rnlp-methods Posterior sampling for regression parameters
rpostNIW Posterior Normal-IWishart density

-- S --

show-method Class "icfit"
show-method Class "mixturebf"
show-method Class "msfit"
show-method Class "msfit_ggm"

-- U --

unifPrior Priors on model space for variable selection problems

-- Z --

zellnerprior Class "msPriorSpec"