Spatio-Temporal Crop Yield Prediction


[Up] [Top]

Documentation for package ‘STCYP’ version 1.0.0

Help Pages

clayton.theta Compute Clayton Copula Parameter from Kendall's Tau
copula_list Supported copula types
data Real crop yield and meteorological data of 24 regions for Ontario, Canada from 1950 to 2022 and anticipated data from 2023 to 2100.
dt Selected data from year 1950 to 2022 and covariates including txgt27, tr18, cddcold, txgt29, and tnmean for case study.
dynamic.rho Compute Dynamic Gaussian Copula Correlation Parameter (rho)
dynamic.theta.clayton Compute Dynamic Clayton Copula Parameter
dynamic.theta.frank Compute Dynamic Frank Copula Parameter
dynamic.theta.gumbel Compute Dynamic Gumbel Copula Parameter
dynamic.theta.joe Compute Dynamic Joe Copula Parameter
fit_bsts Fit a Bayesian Structural Time Series (BSTS) Model
frank.theta Compute Frank Copula Parameter from Kendall's Tau
GH.theta Compute Gumbel Copula Parameter from Kendall's Tau
init_params_full Initial Parameters for 3D Pseudo-Loglikelihood Estimation
joe.theta Compute Joe Copula Parameter from Kendall's Tau
log_likelihood_noGEV_3d Log-Likelihood Function for 3D Copula Model
medoid_names list containing Chatham-Kent, Lambton, and Wellington
n_test 19
n_train 54
plot_forecast Plot Observed Data and BSTS Forecast
plot_forecast_compare Compare Forecasts from Two Models
simul_fun_noGEV_3d Function to optimize the full pseudo-loglikelihood and perform new forecasts
time 1950-2022
time_test 2004-2022
time_train 1950-2003
u Pseudo-Observations of BSTS Residuals for Crop Yield Forecasting
y_test Crop Yield Data for Testing in BSTS Models
y_train Crop Yield Training Matrix
z_test Standardized Covariates (Test)
z_train Standardized Covariates (Training)