CRAN Package Check Results for Package mllrnrs

Last updated on 2026-01-12 19:50:26 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.0.7 5.79 189.09 194.88 OK
r-devel-linux-x86_64-debian-gcc 0.0.7 3.92 146.73 150.65 OK
r-devel-linux-x86_64-fedora-clang 0.0.7 10.00 328.40 338.40 OK
r-devel-linux-x86_64-fedora-gcc 0.0.7 9.00 324.21 333.21 ERROR
r-devel-windows-x86_64 0.0.7 9.00 273.00 282.00 OK
r-patched-linux-x86_64 0.0.7 5.42 188.20 193.62 OK
r-release-linux-x86_64 0.0.7 4.77 195.06 199.83 OK
r-release-macos-arm64 0.0.7 1.00 56.00 57.00 OK
r-release-macos-x86_64 0.0.7 4.00 259.00 263.00 OK
r-release-windows-x86_64 0.0.7 7.00 280.00 287.00 OK
r-oldrel-macos-arm64 0.0.7 1.00 64.00 65.00 OK
r-oldrel-macos-x86_64 0.0.7 4.00 273.00 277.00 OK
r-oldrel-windows-x86_64 0.0.7 9.00 387.00 396.00 OK

Check Details

Version: 0.0.7
Check: tests
Result: ERROR Running ‘testthat.R’ [112s/117s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > # https://github.com/Rdatatable/data.table/issues/5658 > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mllrnrs) > > test_check("mllrnrs") CV fold: Fold1 CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-binary-225.R CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold2 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold3 Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. Classification: using 'mean classification error' as optimization metric. CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Saving _problems/test-regression-107.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 CV fold: Fold1 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold2 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold3 Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. Regression: using 'mean squared error' as optimization metric. CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Saving _problems/test-regression-309.R CV fold: Fold1 CV fold: Fold2 CV fold: Fold3 [ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5', 'test-multiclass.R:57:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-binary.R:225:5'): test nested cv, bayesian, binary - lightgbm ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─lightgbm_optimizer$execute() at test-binary.R:225:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-regression.R:107:5'): test nested cv, bayesian, regression - glmnet ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─glmnet_optimizer$execute() at test-regression.R:107:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) ── Error ('test-regression.R:309:5'): test nested cv, bayesian, reg:squarederror - xgboost ── Error: Package "ParBayesianOptimization" must be installed to use 'strategy = "bayesian"'. Backtrace: ▆ 1. └─xgboost_optimizer$execute() at test-regression.R:309:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.fold_looper(self, private) 4. ├─base::do.call(private$cv_run_model, run_args) 5. └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`) 6. ├─base::do.call(.cv_run_nested_model, args) 7. └─mlexperiments (local) `<fn>`(...) 8. └─hparam_tuner$execute(k = self$k_tuning) 9. └─private$select_optimizer(self, private) 10. └─BayesianOptimizer$new(...) 11. └─mlexperiments (local) initialize(...) [ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc