CRAN Package Check Results for Package mlsurvlrnrs

Last updated on 2025-09-09 08:49:37 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.0.5 7.01 174.47 181.48 OK
r-devel-linux-x86_64-debian-gcc 0.0.5 4.49 147.56 152.05 ERROR
r-devel-linux-x86_64-fedora-clang 0.0.5 250.69 ERROR
r-devel-linux-x86_64-fedora-gcc 0.0.5 376.09 ERROR
r-devel-windows-x86_64 0.0.5 8.00 338.00 346.00 OK
r-patched-linux-x86_64 0.0.5 6.64 232.10 238.74 OK
r-release-linux-x86_64 0.0.5 6.50 230.31 236.81 OK
r-release-macos-arm64 0.0.5 159.00 OK
r-release-macos-x86_64 0.0.5 155.00 OK
r-release-windows-x86_64 0.0.5 8.00 338.00 346.00 OK
r-oldrel-macos-arm64 0.0.5 113.00 OK
r-oldrel-macos-x86_64 0.0.5 167.00 OK
r-oldrel-windows-x86_64 0.0.5 11.00 471.00 482.00 OK

Check Details

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error: Package "measures" must be installed to use function 'metric_types_helper()'. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [95s/311s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 6.851 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.238 seconds 3) Running FUN 2 times in 2 thread(s)... 1.162 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 6.245 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.466 seconds 3) Running FUN 2 times in 2 thread(s)... 1.164 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 5.49 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.736 seconds 3) Running FUN 2 times in 2 thread(s)... 0.777 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 7.787 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 10.502 seconds 3) Running FUN 2 times in 2 thread(s)... 0.758 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.735 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 14.874 seconds 3) Running FUN 2 times in 2 thread(s)... 0.795 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.179 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 0.893 seconds 3) Running FUN 2 times in 2 thread(s)... 0.813 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.523 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.839 seconds 3) Running FUN 2 times in 2 thread(s)... 0.51 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.457 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.71 seconds 3) Running FUN 2 times in 2 thread(s)... 0.722 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.957 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 0.911 seconds 3) Running FUN 2 times in 2 thread(s)... 0.562 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.431 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.601 seconds 3) Running FUN 2 times in 2 thread(s)... 0.641 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 5.659 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 11.341 seconds 3) Running FUN 2 times in 2 thread(s)... 0.613 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 6.544 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.119 seconds 3) Running FUN 2 times in 2 thread(s)... 1.085 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 4.729 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 86.157 seconds 3) Running FUN 2 times in 2 thread(s)... 0.429 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.828 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 7.532 seconds 3) Running FUN 2 times in 2 thread(s)... 0.4 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 3.794 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.162 seconds 3) Running FUN 2 times in 2 thread(s)... 0.712 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error: Package "measures" must be installed to use function 'metric_types_helper()'. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [2m/46m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 46.09 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 16.202 seconds 3) Running FUN 2 times in 2 thread(s)... 7.73 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 73.288 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 15.895 seconds 3) Running FUN 2 times in 2 thread(s)... 5.094 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 38.916 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 7.693 seconds 3) Running FUN 2 times in 2 thread(s)... 16.055 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 57.507 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 704.096 seconds 3) Running FUN 2 times in 2 thread(s)... 7.571 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 49.912 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 267.825 seconds 3) Running FUN 2 times in 2 thread(s)... 3.79 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 38.892 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 38.319 seconds 3) Running FUN 2 times in 2 thread(s)... 5.735 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 52.099 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.208 seconds 3) Running FUN 2 times in 2 thread(s)... 2.896 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 60.502 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 8.243 seconds 3) Running FUN 2 times in 2 thread(s)... 5.359 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 63.472 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 9.439 seconds 3) Running FUN 2 times in 2 thread(s)... 4.052 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 60.45 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 140.685 seconds 3) Running FUN 2 times in 2 thread(s)... 4.043 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 55.389 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 43.095 seconds 3) Running FUN 2 times in 2 thread(s)... 8.372 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 52.599 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 81.76 seconds 3) Running FUN 2 times in 2 thread(s)... 3.346 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 42.569 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 41.228 seconds 3) Running FUN 2 times in 2 thread(s)... 3.366 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 41.494 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 84.82 seconds 3) Running FUN 2 times in 2 thread(s)... 4.257 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 39.031 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 49.178 seconds 3) Running FUN 2 times in 2 thread(s)... 2.423 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error: Package "measures" must be installed to use function 'metric_types_helper()'. Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.0.5
Check: examples
Result: ERROR Running examples in ‘mlsurvlrnrs-Ex.R’ failed The error most likely occurred in: > ### Name: LearnerSurvCoxPHCox > ### Title: R6 Class to construct a Cox proportional hazards survival > ### learner > ### Aliases: LearnerSurvCoxPHCox > > ### ** Examples > > # survival analysis > > dataset <- survival::colon |> + data.table::as.data.table() |> + na.omit() > dataset <- dataset[get("etype") == 2, ] > > seed <- 123 > surv_cols <- c("status", "time", "rx") > > feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] > > split_vector <- splitTools::multi_strata( + df = dataset[, .SD, .SDcols = surv_cols], + strategy = "kmeans", + k = 4 + ) > > train_x <- model.matrix( + ~ -1 + ., + dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])] + ) > train_y <- survival::Surv( + event = (dataset[, get("status")] |> + as.character() |> + as.integer()), + time = dataset[, get("time")], + type = "right" + ) > > fold_list <- splitTools::create_folds( + y = split_vector, + k = 3, + type = "stratified", + seed = seed + ) > > > surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new( + learner = LearnerSurvCoxPHCox$new(), + fold_list = fold_list, + ncores = 1L, + seed = seed + ) > surv_coxph_cox_optimizer$performance_metric <- c_index > > # set data > surv_coxph_cox_optimizer$set_data( + x = train_x, + y = train_y + ) > > surv_coxph_cox_optimizer$execute() CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. Error in if (fun_name == "PPV") { : argument is of length zero Calls: <Anonymous> ... .compute_performance -> sapply -> lapply -> FUN -> metric_types_helper Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [4m/24m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > Sys.setenv("OMP_THREAD_LIMIT" = 2) > Sys.setenv("Ncpu" = 2) > > library(testthat) > library(mlsurvlrnrs) > > test_check("mlsurvlrnrs") CV fold: Fold1 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold2 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold3 Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'. CV fold: Fold1 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 25.218 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.299 seconds 3) Running FUN 2 times in 2 thread(s)... 3.381 seconds CV fold: Fold2 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 29.124 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 6.087 seconds 3) Running FUN 2 times in 2 thread(s)... 3.769 seconds CV fold: Fold3 Registering parallel backend using 2 cores. Running initial scoring function 6 times in 2 thread(s)... 23.974 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.869 seconds 3) Running FUN 2 times in 2 thread(s)... 3.986 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 22.342 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... 37.406 seconds 3) Running FUN 2 times in 2 thread(s)... 2.7 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 23.778 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 88.566 seconds 3) Running FUN 2 times in 2 thread(s)... 1.06 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 20.903 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... 3.98 seconds 3) Running FUN 2 times in 2 thread(s)... 1.651 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 18.372 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 1.63 seconds 3) Running FUN 2 times in 2 thread(s)... 1.143 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 23.218 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 3.465 seconds 3) Running FUN 2 times in 2 thread(s)... 2.314 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 20.494 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 2.132 seconds 3) Running FUN 2 times in 2 thread(s)... 1.254 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 23.63 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 71.942 seconds 3) Running FUN 2 times in 2 thread(s)... 1.643 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 19.804 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 61.991 seconds 3) Running FUN 2 times in 2 thread(s)... 2.427 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 23.17 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 37.123 seconds 3) Running FUN 2 times in 2 thread(s)... 1.809 seconds CV fold: Fold1 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 19.332 seconds Starting Epoch 1 1) Fitting Gaussian Process... - Could not obtain meaningful lengthscales. 2) Running local optimum search... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Convergence Not Found. Trying again with tighter parameters... - Maximum convergence attempts exceeded - process is probably sampling random points. 379.066 seconds 3) Running FUN 2 times in 2 thread(s)... 1.217 seconds CV fold: Fold2 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 18.742 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 53.785 seconds 3) Running FUN 2 times in 2 thread(s)... 0.871 seconds CV fold: Fold3 Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'... ... reducing initialization grid to 10 rows. Registering parallel backend using 2 cores. Running initial scoring function 10 times in 2 thread(s)... 16.34 seconds Starting Epoch 1 1) Fitting Gaussian Process... 2) Running local optimum search... 10.621 seconds 3) Running FUN 2 times in 2 thread(s)... 2 seconds [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test-lints.R:10:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-surv_coxph_cox.R:56:5'): test cv - surv_coxph_cox ────────────── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_coxph_cox_optimizer$execute() at test-surv_coxph_cox.R:56:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_glmnet_cox.R:99:5'): test nested cv, grid - surv_glmnet_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_glmnet_cox_optimizer$execute() at test-surv_glmnet_cox.R:99:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_ranger_cox.R:110:5'): test nested cv, bayesian - surv_ranger_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_ranger_cox_optimizer$execute() at test-surv_ranger_cox.R:110:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_rpart_cox.R:108:5'): test nested cv, bayesian - surv_rpart_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_rpart_cox_optimizer$execute() at test-surv_rpart_cox.R:108:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_aft.R:116:5'): test nested cv, bayesian - surv_xgboost_aft ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_xgboost_aft_optimizer$execute() at test-surv_xgboost_aft.R:116:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) ── Error ('test-surv_xgboost_cox.R:115:5'): test nested cv, bayesian - surv_xgboost_cox ── Error in `if (fun_name == "PPV") { metric_metadata$probabilities <- FALSE }`: argument is of length zero Backtrace: ▆ 1. └─surv_xgboost_cox_optimizer$execute() at test-surv_xgboost_cox.R:115:5 2. └─mlexperiments:::.run_cv(self = self, private = private) 3. └─mlexperiments:::.cv_postprocessing(...) 4. └─mlexperiments:::.compute_performance(...) 5. └─base::sapply(...) 6. └─base::lapply(X = X, FUN = FUN, ...) 7. └─mlexperiments (local) FUN(X[[i]], ...) 8. └─mlexperiments::metric_types_helper(...) [ FAIL 6 | WARN 0 | SKIP 1 | PASS 0 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc