
Package ‘dtrackr’
September 1, 2025

Title Track your Data Pipelines

Version 0.5.0

Description Track and
document 'dplyr' data pipelines. As you filter, mutate, and join your
way through a data set, 'dtrackr' seamlessly keeps track of your data
flow and makes publication ready documentation of a data pipeline simple.

License MIT + file LICENSE

Language en-GB

Imports dplyr (>= 1.1.0), glue, htmltools, magrittr, rlang, rsvg,
stringr, tibble, tidyr, utils, V8, fs, purrr, base64enc,
pdftools, png, lifecycle, scales

Suggests spelling, here, knitr, rmarkdown, tidyselect, devtools,
testthat (>= 2.1.0), rstudioapi, survival, ggplot2, covr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2.9004

Depends R (>= 2.10)

URL https://terminological.github.io/dtrackr/index.html,

https://github.com/terminological/dtrackr

BugReports https://github.com/terminological/dtrackr/issues

NeedsCompilation no

Author Robert Challen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5504-7768>)

Maintainer Robert Challen <rob.challen@bristol.ac.uk>

Repository CRAN

Date/Publication 2025-09-01 15:50:07 UTC

1

https://terminological.github.io/dtrackr/index.html
https://github.com/terminological/dtrackr
https://github.com/terminological/dtrackr/issues
https://orcid.org/0000-0002-5504-7768

2 Contents

Contents
add_count.trackr_df . 4
add_tally . 7
anti_join.trackr_df . 8
arrange.trackr_df . 10
bind_cols . 12
bind_rows . 13
capture_exclusions . 15
comment . 16
count_subgroup . 17
distinct.trackr_df . 18
dot2svg . 19
excluded . 20
exclude_all . 21
filter.trackr_df . 23
flowchart . 24
full_join.trackr_df . 26
group_by.trackr_df . 29
group_modify.trackr_df . 30
history . 31
include_any . 32
inner_join.trackr_df . 34
intersect.trackr_df . 37
left_join.trackr_df . 39
mutate.trackr_df . 42
nest.trackr_df . 44
nest_join.trackr_df . 46
pause . 48
pivot_longer.trackr_df . 49
pivot_wider.trackr_df . 52
plot.trackr_graph . 56
print.trackr_graph . 57
p_add_count . 57
p_add_tally . 59
p_anti_join . 60
p_arrange . 62
p_bind_cols . 64
p_bind_rows . 66
p_capture_exclusions . 68
p_clear . 68
p_comment . 69
p_copy . 70
p_count_if . 70
p_count_subgroup . 71
p_distinct . 72
p_excluded . 73
p_exclude_all . 74

Contents 3

p_filter . 76
p_flowchart . 77
p_full_join . 79
p_get . 82
p_get_as_dot . 83
p_group_by . 84
p_group_modify . 85
p_include_any . 86
p_inner_join . 88
p_intersect . 91
p_left_join . 93
p_mutate . 96
p_nest . 98
p_nest_join . 100
p_pause . 102
p_pivot_longer . 103
p_pivot_wider . 107
p_reframe . 110
p_relocate . 111
p_rename . 113
p_rename_with . 114
p_resume . 116
p_right_join . 117
p_select . 120
p_semi_join . 121
p_set . 123
p_setdiff . 124
p_slice . 125
p_slice_head . 127
p_slice_max . 129
p_slice_min . 131
p_slice_sample . 133
p_slice_tail . 135
p_status . 137
p_summarise . 138
p_tagged . 139
p_track . 140
p_transmute . 141
p_ungroup . 143
p_union . 144
p_union_all . 146
p_unnest . 148
p_untrack . 150
reframe.trackr_df . 151
relocate.trackr_df . 152
rename.trackr_df . 154
rename_with.trackr_df . 155
resume . 157

4 add_count.trackr_df

right_join.trackr_df . 158
save_dot . 161
select.trackr_df . 162
semi_join.trackr_df . 163
setdiff.trackr_df . 165
slice.trackr_df . 167
slice_head.trackr_df . 169
slice_max.trackr_df . 171
slice_min.trackr_df . 173
slice_sample.trackr_df . 175
slice_tail.trackr_df . 177
status . 179
std_size . 180
summarise.trackr_df . 181
tagged . 182
track . 183
transmute.trackr_df . 184
ungroup.trackr_df . 185
union.trackr_df . 186
union_all.trackr_df . 188
unnest.trackr_df . 190
untrack . 193

Index 194

add_count.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
add_count(x, ..., .messages = "", .headline = "", .tag = NULL)

S3 method for class 'trackr_df'
add_count(x, ..., .messages = "", .headline = "", .tag = NULL)

add_count.trackr_df 5

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_count

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

Named arguments passed on to tidyr::unnest

data A data frame.
cols <tidy-select> List-columns to unnest.

When selecting multiple columns, values from the same row will be recy-
cled to their common size.

keep_empty By default, you get one row of output for each element of the
list that you are unchopping/unnesting. This means that if there’s a size-
0 element (like NULL or an empty data frame or vector), then that entire
row will be dropped from the output. If you want to preserve all rows, use
keep_empty = TRUE to replace size-0 elements with a single row of missing
values.

ptype Optionally, a named list of column name-prototype pairs to coerce cols
to, overriding the default that will be guessed from combining the individual
values. Alternatively, a single empty ptype can be supplied, which will be
applied to all cols.

names_sep If NULL, the default, the outer names will come from the inner
names. If a string, the outer names will be formed by pasting together
the outer and the inner column names, separated by names_sep.

names_repair Used to check that output data frame has valid names. Must be
one of the following options:

• "minimal": no name repair or checks, beyond basic existence,
• "unique": make sure names are unique and not empty,
• "check_unique": (the default), no name repair, but check they are

unique,
• "universal": make the names unique and syntactic
• a function: apply custom name repair.

6 add_count.trackr_df

• tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())

See vctrs::vec_as_names() for more details on these terms and the strate-
gies used to enforce them.

.drop,.preserve [Deprecated]: all list-columns are now preserved; If there
are any that you don’t want in the output use select() to remove them
prior to unnesting.

.id [Deprecated]: convert df %>% unnest(x, .id = "id") to df %>% mutate(id = names(x)) %>% unnest(x)).

.sep [Deprecated]: use names_sep instead.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_count()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%

add_tally 7

dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",
.messages="{.new_cols}",
.headline="New columns from add_tally:") %>%

history()

add_tally dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

add_tally(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_tally

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

8 anti_join.trackr_df

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_tally()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

anti_join.trackr_df Anti join

anti_join.trackr_df 9

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
anti_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} not matched"),
.headline = "Semi join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

10 arrange.trackr_df

Anti join
join = lhs %>% anti_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

arrange.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
arrange(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::arrange

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

.locale The locale to sort character vectors in.
• If NULL, the default, uses the "C" locale unless the dplyr.legacy_locale

global option escape hatch is active. See the dplyr-locale help page for
more details.

arrange.trackr_df 11

• If a single string from stringi::stri_locale_list() is supplied,
then this will be used as the locale to sort with. For example, "en"
will sort with the American English locale. This requires the stringi
package.

• If "C" is supplied, then character vectors will always be sorted in the
C locale. This does not require stringi and is often much faster than
supplying a locale identifier.

The C locale is not the same as English locales, such as "en", particu-
larly when it comes to data containing a mix of upper and lower case let-
ters. This is explained in more detail on the locale help page under the
Default locale section.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::arrange()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

arrange
In this case we sort the data descending and show the first value
is the same as the maximum value.
iris %>%

track() %>%
arrange(
desc(Petal.Width),
.messages="{.count} items, columns: {.cols}",
.headline="Reordered dataframe:") %>%

history()

12 bind_cols

bind_cols Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

bind_cols(
...,
.messages = "{.count.out} in combined set",
.headline = "Bind columns"

)

Arguments

... a collection of tracked data frames to combine Named arguments passed on to
dplyr::bind_cols

.name_repair One of "unique", "universal", or "check_unique". See vctrs::vec_as_names()
for the meaning of these options.

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_cols()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",

bind_rows 13

species == "Droid" ~ "{.included} droids"
)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

bind_rows Set operations

14 bind_rows

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

bind_rows(..., .messages = "{.count.out} in union", .headline = "Union")

Arguments

... a collection of tracked data frames to combine Named arguments passed on to
dplyr::bind_rows

.id The name of an optional identifier column. Provide a string to create an
output column that identifies each input. The column will use names if
available, otherwise it will use positions.

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_rows()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

capture_exclusions 15

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

capture_exclusions Start capturing exclusions on a tracked dataframe.

Description

Start capturing exclusions on a tracked dataframe.

Usage

capture_exclusions(.data, .capture = TRUE)

16 comment

Arguments

.data a tracked dataframe

.capture Should we capture exclusions (things removed from the data set). This is useful
for debugging data issues but comes at a significant cost. Defaults to the value
of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind of note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
respectively. It can also pull in any global variable.

Usage

comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} of all rows, the {.count} variable which is the count in each group
and {.strata} a description of the group

count_subgroup 17

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable (which is nrow(.data))
and {.strata} which is a description of the grouping

.type one of "info","...,"exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data a dataframe which may be grouped

.subgroup a column with a small number of levels (e.g. a factor)

... passed to base::factor(subgroup values, ...) to allow reordering of lev-
els etc.

18 distinct.trackr_df

.messages a character vector of glue specifications. A glue specification can refer to any-
thing from the calling environment, {.subgroup} for the subgroup column name
and {.name} for the subgroup column value, {.count} for the subgroup column
count, {.subtotal} for the current stratification grouping count and {.total} for
the whole dataset count

.headline a glue specification which can refer to grouping variables of .data, {.subtotal} for
the current grouping count, or any variables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want to use the summary data from this step in the future then give it a
name with .tag.

.maxsubgroups the maximum number of discrete values allowed in .subgroup is configurable
with options("dtrackr.max_supported_groupings"=XX). The default is 16.
Large values produce unwieldy flow charts.

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

Examples

library(dplyr)
library(dtrackr)
survival::cgd %>% track() %>% dplyr::group_by(treat) %>%

count_subgroup(center) %>% history()

distinct.trackr_df Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting. See dplyr::distinct().

Usage

S3 method for class 'trackr_df'
distinct(
.data,
...,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

dot2svg 19

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row
will be preserved. If omitted, will use all variables in the data frame. Named
arguments passed on to dplyr::distinct

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not
distinct, this keeps the first row of values.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

See Also

dplyr::distinct()

Examples

library(dplyr)
library(dtrackr)

tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% dplyr::group_by(Species) %>% dplyr::distinct() %>% history()

dot2svg Convert Graphviz dot content to a SVG

Description

Convert a graphviz dot digraph as string to SVG as string

Usage

dot2svg(dot)

Arguments

dot a graphviz dot string

20 excluded

Value

the SVG as a string

Examples

dot2svg("digraph { A->B }")

excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

excluded(.data, simplify = TRUE)

Arguments

.data a dataframe which may be grouped

simplify return a single summary dataframe of all exclusions.

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

exclude_all 21

exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph. Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an combinatorial
manner, i.e. the results EXCLUDE ALL rows that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by any criteria.

Usage

exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match any of the predicates will be excluded.
The RHS is a glue specification, defining the message, to be entered in the his-
tory graph for each predicate. This can refer to grouping variables variables
from the environment and {.excluded} and {.matched} or {.missing} (excluded
= matched+missing), {.count} and {.total} - group and overall counts respec-
tively, e.g. "excluding {.matched} items and {.missing} with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = TRUE).

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

22 exclude_all

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% capture_exclusions() %>% exclude_all(
Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
exclude_all(

These two criteria identify the same value and one item is excluded
a > 9 ~ "{.excluded} value > 9",
a == max(a) ~ "{.excluded} max value",

) %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9, a != max(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
exclude_all(a > 9 ~ "{.excluded} value > 9") %>%
exclude_all(a == max(a) ~ "{.excluded} max value") %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9) %>%
dplyr::filter(a != max(a)) %>%
nrow()

filter.trackr_df 23

filter.trackr_df Filtering data

Description

Filter acts in the same way as in dplyr where predicates which evaluate to TRUE act to select items
to include, and items for which the predicate cannot be evaluated are excluded. For tracking prior to
the filter operation the size of each group is calculated {.count.in} and after the operation the output
size of each group {.count.out}. The grouping {.strata} is also available (if grouped) for reporting.
See dplyr::filter().

Usage

S3 method for class 'trackr_df'
filter(
.data,
...,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept. Named arguments passed on to dplyr::filter

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type the format type of the action typically an exclusion

24 flowchart

.asOffshoot if the type is exclusion, .asOffshoot places the information box outside of the
main flow, as an exclusion.

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe(s), with all the tracked data pipeline as stages
in the flowchart. Multiple dataframes can be plotted together in which case an attempt is made to
determine which parts are common.

Usage

flowchart(
.data,
filename = NULL,
size = std_size$full,
maxWidth = size$width,
maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
landscape = size$rot != 0,
...

)

flowchart 25

Arguments

.data the tracked dataframe(s) either as a single dataframe or as a list of dataframes.

filename a file name which will be where the formatted flowcharts are saved. If no exten-
sion is specified the output formats are determined by the formats parameter.

size a named list with 3 elements, length and width in inches and rotation. A prede-
fined set of standard sizes are available in the std_size object.

maxWidth a width (on the paper) in inches if size is not defined

maxHeight a height (on the paper) in inches if size is not defined

formats some of pdf,dot,svg,png,ps

defaultToHTML if the correct output format is not easy to determine from the context, default
providing HTML (TRUE) or to embedding the PNG (FALSE)

landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight
still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... ignored Named arguments passed on to p_get_as_dot

fill the default node fill colour, any R colour or hex value

fontsize the default font size in points

colour the default font colour, any R colour or hex value

rankdir the dot rank direction (one of TB,LR,BT,RL)

rounded should the node corners be rounded?

fontname the font to use. Must exist on the system.

bgcolour the background, may be "transparent", any R colour or hex value

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDF link if in
knitr and knitting latex or word type outputs, if file name is specified the output will also be saved
at the given location.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% dplyr::group_by(Species) %>% comment(.tag="step2") %>% flowchart()

26 full_join.trackr_df

full_join.trackr_df Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
full_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::full_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

full_join.trackr_df 27

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

28 full_join.trackr_df

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

group_by.trackr_df 29

group_by.trackr_df Stratifying your analysis

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a time-series. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches and be illegible. dtrackr will detect this issue and pause tracking the dataframe with a
warning. It is up to the user to the resume() tracking when the large number of groups have been re-
solved e.g. using a dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

S3 method for class 'trackr_df'
group_by(
.data,
...,
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping. Named arguments passed on to dplyr::group_by

.add When FALSE, the default, group_by() will override existing groups. To
add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The
default is TRUE except when .data has been previously grouped with .drop
= FALSE. See group_by_drop_default() for details.

x A tbl()

.messages a set of glue specs. The glue code can use any global variable, or {.cols} which
is the columns that are being grouped by.

30 group_modify.trackr_df

.headline a headline glue spec. The glue code can use any global variable, or {.cols}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is paused.

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

group_modify.trackr_df

Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

Usage

S3 method for class 'trackr_df'
group_modify(
.data,
...,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

history 31

Arguments

.data A grouped tibble

... Additional arguments passed on to .f Named arguments passed on to dplyr::group_modify

.f A function or formula to apply to each group.
If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

• . or .x to refer to the subset of rows of .tbl for the given group
• .y to refer to the key, a one row tibble with one column per grouping

variable that identifies the group
.keep are the grouping variables kept in .x

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type default "modify": used to define formatting

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% dplyr::group_modify(

function(d,g,...) { return(tibble::tibble(x=stats::runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

history Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

32 include_any

Usage

history(.data)

Arguments

.data a dataframe which may be grouped

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe
• tags - a dataframe of tag-value pairs containing the summary of the data at named points in

the data flow (see tagged())
• nodes - a dataframe of the nodes of the flow chart
• edges - an edge list (as a dataframe) of the relationships between the nodes in the flow chart
• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
library(dtrackr)
graph = iris %>% track() %>% comment("A comment") %>% history()
print(graph)

include_any Include any items matching a criteria

Description

Apply a set of inclusion criteria and record the actions of the filter to the dtrackr history graph.
Because of the ... filter specification, all parameters MUST BE NAMED. This function is the
opposite of exclude_all() and the filtering criteria work to identify rows to include i.e. the results
include anything that match any of the criteria. If na.rm=TRUE they also keep anything that cannot
be evaluated by the criteria.

Usage

include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE,
.tag = NULL

)

include_any 33

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match at least one of the predicates will be
included. The RHS is a glue specification, defining the message, to be entered
in the history graph for each predicate matched. This can refer to grouping
variables, variables from the environment and {.included} and {.matched} or
{.missing} (included = matched+missing), {.count} and {.total} - group and
overall counts respectively, e.g. "excluding {.matched} items and {.missing}
with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default TRUE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "inclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% dplyr::group_by(Species) %>% include_any(
Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
include_any(

These two criteria identify the same value and one item is excluded
a > 1 ~ "{.included} value > 1",
a != min(a) ~ "{.included} everything but the smallest value",

) %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1, a != min(a)) %>%

34 inner_join.trackr_df

nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
include_any(a > 1 ~ "{.included} value > 1") %>%
include_any(a != min(a) ~ "{.included} everything but the smallest value") %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1) %>%
dplyr::filter(a != min(a)) %>%
nrow()

inner_join.trackr_df Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
inner_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::inner_join

inner_join.trackr_df 35

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

36 inner_join.trackr_df

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

intersect.trackr_df 37

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Inner join
join = lhs %>% inner_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

intersect.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
intersect(
x,
y,
...,
.messages = "{.count.out} in intersection",
.headline = "Intersection"

)

Arguments

x, y Vectors to combine.
... a collection of tracked data frames to combine
.messages a set of glue specs. The glue code can use any global variable, or {.count.out}
.headline a glue spec. The glue code can use any global variable, or {.count.out}

38 intersect.trackr_df

Value

the dplyr output with the history graph updated.

See Also

generics::intersect()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

left_join.trackr_df 39

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

left_join.trackr_df Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
left_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Left join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::left_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.

40 left_join.trackr_df

To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

left_join.trackr_df 41

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

42 mutate.trackr_df

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Left join
join = lhs %>% left_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

mutate.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

mutate.trackr_df 43

Named arguments passed on to dplyr::mutate

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping
columns and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns.

This is useful for checking your work, as it displays inputs and outputs
side-by-side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the
columns used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the group-
ing variables and columns created by ... are kept.

.before,.after <tidy-select> Optionally, control where new columns should
appear (the default is to add to the right hand side). See relocate() for
more details.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::mutate()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

mutate
In this example we compare the column names of the input and the
output to identify the new columns created by the mutate operation as

44 nest.trackr_df

the `.new_cols` variable
iris %>%

track() %>%
mutate(extra_col = NA_real_,

.messages="{.new_cols}",

.headline="Extra columns from mutate:") %>%
history()

nest.trackr_df Reshaping data using tidyr::nest

Description

A drop in replacement for tidyr::nest() which optionally takes a message and headline to store
in the history graph.

Usage

S3 method for class 'trackr_df'
nest(
.data,
...,
.by = NULL,
.key = NULL,
.names_sep = NULL,
.messages = c("{.count.out} items"),
.headline = ""

)

Arguments

.data A data frame.

... <tidy-select> Columns to nest; these will appear in the inner data frames.
Specified using name-variable pairs of the form new_col = c(col1, col2, col3).
The right hand side can be any valid tidyselect expression.
If not supplied, then ... is derived as all columns not selected by .by, and will
use the column name from .key.
[Deprecated]: previously you could write df %>% nest(x, y, z). Convert to
df %>% nest(data = c(x, y, z)).

.by <tidy-select> Columns to nest by; these will remain in the outer data frame.
.by can be used in place of or in conjunction with columns supplied through
....
If not supplied, then .by is derived as all columns not selected by

.key The name of the resulting nested column. Only applicable when ... isn’t spec-
ified, i.e. in the case of df %>% nest(.by = x).
If NULL, then "data" will be used by default.

nest.trackr_df 45

.names_sep If NULL, the default, the inner names will come from the former outer names. If
a string, the new inner names will use the outer names with names_sep auto-
matically stripped. This makes names_sep roughly symmetric between nesting
and unnesting.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.count.in}, {.count.out} or {.strata}. Defaults to "{.count.out} items".

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the data dataframe result of the tidyr::nest function but with a history graph updated.

See Also

tidyr::nest()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions

46 nest_join.trackr_df

with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(
percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

nest_join.trackr_df Nest join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::nest_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
nest_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} matched"),
.headline = "Nest join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::nest_join

nest_join.trackr_df 47

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve
the join keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the
name of y is used.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

48 pause

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::nest_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Nest join
join = lhs %>% nest_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

pause Pause tracking the data frame.

Description

Pausing tracking of a data frame may be required if an operation is about to be performed that
creates a lot of groupings or that you otherwise don’t want to pollute the history graph (e.g. maybe
selecting something using an anti-join). Once paused the history is not updated until a resume() is
called, or when the data frame is ungrouped (if auto is enabled).

Usage

pause(.data, auto = FALSE)

pivot_longer.trackr_df 49

Arguments

.data a tracked dataframe

auto if TRUE the tracking will resume automatically when the number of groups has
fallen to a sensible level (default is FALSE)

Value

the .data dataframe with history graph tracking paused

Examples

iris %>% track() %>% pause() %>% history()

pivot_longer.trackr_df

Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer() which optionally takes a message and headline
to store in the history graph.

Usage

S3 method for class 'trackr_df'
pivot_longer(
data,
cols,
...,
cols_vary = "fastest",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,
.messages = c("long format", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

50 pivot_longer.trackr_df

Arguments

data A data frame to pivot.

cols <tidy-select> Columns to pivot into longer format.

... Additional arguments passed on to methods.

cols_vary When pivoting cols into longer format, how should the output rows be arranged
relative to their original row number?

• "fastest", the default, keeps individual rows from cols close together in
the output. This often produces intuitively ordered output when you have at
least one key column from data that is not involved in the pivoting process.

• "slowest" keeps individual columns from cols close together in the out-
put. This often produces intuitively ordered output when you utilize all of
the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.
• If length >1, multiple columns will be created. In this case, one of names_sep

or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes, values_ptypes
Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.

pivot_longer.trackr_df 51

names_transform, values_transform
Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the result of the tidyr::pivot_longer but with a history graph updated.

See Also

tidyr::pivot_longer()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:

52 pivot_wider.trackr_df

starwars %>%
track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(

percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

pivot_wider.trackr_df Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider() which optionally takes a message and headline
to store in the history graph.

pivot_wider.trackr_df 53

Usage

S3 method for class 'trackr_df'
pivot_wider(
data,
...,
id_cols = NULL,
id_expand = FALSE,
names_from = name,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE,
names_repair = "check_unique",
values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL,
.messages = c("wide format", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods.

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

id_expand Should the values in the id_cols columns be expanded by expand() before piv-
oting? This results in more rows, the output will contain a complete expansion
of all possible values in id_cols. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the row values corresponding to
the expanded id_cols will be sorted.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

54 pivot_wider.trackr_df

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple unique val-
ues, and multiple values_from columns are provided, in what order should the
resulting column names be combined?

• "fastest" varies names_from values fastest, resulting in a column naming
scheme of the form: value1_name1, value1_name2, value2_name1, value2_name2.
This is the default.

• "slowest" varies names_from values slowest, resulting in a column nam-
ing scheme of the form: value1_name1, value2_name1, value1_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by expand() before
pivoting? This results in more columns, the output will contain column names
corresponding to a complete expansion of all possible values in names_from.
Implicit factor levels that aren’t represented in the data will become explicit.
Additionally, the column names will be sorted, identical to what names_sort
would produce.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to different
values_from columns.

unused_fn Optionally, a function applied to summarize the values from the unused columns
(i.e. columns not identified by id_cols, names_from, or values_from).
The default drops all unused columns from the result.
This can be a named list if you want to apply different aggregations to different
unused columns.
id_cols must be supplied for unused_fn to be useful, since otherwise all un-
specified columns will be considered id_cols.
This is similar to grouping by the id_cols then summarizing the unused columns
using unused_fn.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

pivot_wider.trackr_df 55

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated.

See Also

tidyr::pivot_wider()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(

percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

56 plot.trackr_graph

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

plot.trackr_graph Plots a history graph as html

Description

Plots a history graph as html

Usage

S3 method for class 'trackr_graph'
plot(x, ...)

Arguments

x a dtrackr history graph (e.g. output from history())

... Named arguments passed on to p_get_as_dot

.data the tracked dataframe
fill the default node fill colour, any R colour or hex value
fontsize the default font size in points
colour the default font colour, any R colour or hex value
rankdir the dot rank direction (one of TB,LR,BT,RL)
rounded should the node corners be rounded?
fontname the font to use. Must exist on the system.
bgcolour the background, may be "transparent", any R colour or hex value
... not used

Value

HTML displayed

print.trackr_graph 57

Examples

library(dplyr)
library(dtrackr)
iris %>% comment("hello {.total} rows") %>% history() %>% plot()

print.trackr_graph Print a history graph to the console

Description

Print a history graph to the console

Usage

S3 method for class 'trackr_graph'
print(x, ...)

Arguments

x a dtrackr history graph (e.g. output from p_get())

... not used

Value

nothing

Examples

library(dplyr)
library(dtrackr)
iris %>% comment("hello {.total} rows") %>% history() %>% print()

p_add_count dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

58 p_add_count

Usage

p_add_count(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_count

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_count()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

p_add_tally 59

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

p_add_tally dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_add_tally(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

60 p_anti_join

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_tally()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

p_anti_join Anti join

p_anti_join 61

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

Usage

p_anti_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} not matched"),
.headline = "Semi join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::anti_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

62 p_arrange

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Anti join
join = lhs %>% anti_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_arrange dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

p_arrange 63

Usage

p_arrange(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::arrange

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

.locale The locale to sort character vectors in.
• If NULL, the default, uses the "C" locale unless the dplyr.legacy_locale

global option escape hatch is active. See the dplyr-locale help page for
more details.

• If a single string from stringi::stri_locale_list() is supplied,
then this will be used as the locale to sort with. For example, "en"
will sort with the American English locale. This requires the stringi
package.

• If "C" is supplied, then character vectors will always be sorted in the
C locale. This does not require stringi and is often much faster than
supplying a locale identifier.

The C locale is not the same as English locales, such as "en", particu-
larly when it comes to data containing a mix of upper and lower case let-
ters. This is explained in more detail on the locale help page under the
Default locale section.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

64 p_bind_cols

See Also

dplyr::arrange()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

arrange
In this case we sort the data descending and show the first value
is the same as the maximum value.
iris %>%

track() %>%
arrange(
desc(Petal.Width),
.messages="{.count} items, columns: {.cols}",
.headline="Reordered dataframe:") %>%

history()

p_bind_cols Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_bind_cols(
...,
.messages = "{.count.out} in combined set",
.headline = "Bind columns"

)

Arguments

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

p_bind_cols 65

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_cols()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

66 p_bind_rows

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_bind_rows Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_bind_rows(..., .messages = "{.count.out} in union", .headline = "Union")

Arguments

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_rows()

p_bind_rows 67

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

68 p_clear

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_capture_exclusions Start capturing exclusions on a tracked dataframe.

Description

Start capturing exclusions on a tracked dataframe.

Usage

p_capture_exclusions(.data, .capture = TRUE)

Arguments

.data a tracked dataframe

.capture Should we capture exclusions (things removed from the data set). This is useful
for debugging data issues but comes at a significant cost. Defaults to the value
of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

p_clear Clear the dtrackr history graph

Description

This is unlikely to be needed directly and is mostly and internal function

Usage

p_clear(.data)

p_comment 69

Arguments

.data a dataframe which may be grouped

Value

the .data dataframe with the history graph removed

Examples

library(dplyr)
library(dtrackr)
mtcars %>% track() %>% comment("A comment") %>% p_clear() %>% history()

p_comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind of note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
respectively. It can also pull in any global variable.

Usage

p_comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} of all rows, the {.count} variable which is the count in each group
and {.strata} a description of the group

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable (which is nrow(.data))
and {.strata} which is a description of the grouping

.type one of "info","...,"exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

70 p_count_if

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

p_copy Copy the dtrackr history graph from one dataframe to another

Description

Copy the dtrackr history graph from one dataframe to another

Usage

p_copy(.data, from)

Arguments

.data a dataframe which may be grouped

from the dataframe to copy the history graph from

Value

the .data dataframe with the history graph of "from"

Examples

mtcars %>% p_copy(iris %>% comment("A comment")) %>% history()

p_count_if Simple count_if dplyr summary function

Description

Simple count_if dplyr summary function

Usage

p_count_if(..., na.rm = TRUE)

p_count_subgroup 71

Arguments

... expression to be evaluated

na.rm ignore NA values?

Value

a count of the number of times the expression evaluated to true, in the current context

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% dplyr::group_by(Species)
tmp %>% dplyr::summarise(long_ones = p_count_if(Petal.Length > 4))

p_count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

p_count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data a dataframe which may be grouped

.subgroup a column with a small number of levels (e.g. a factor)

... passed to base::factor(subgroup values, ...) to allow reordering of lev-
els etc.

72 p_distinct

.messages a character vector of glue specifications. A glue specification can refer to any-
thing from the calling environment, {.subgroup} for the subgroup column name
and {.name} for the subgroup column value, {.count} for the subgroup column
count, {.subtotal} for the current stratification grouping count and {.total} for
the whole dataset count

.headline a glue specification which can refer to grouping variables of .data, {.subtotal} for
the current grouping count, or any variables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want to use the summary data from this step in the future then give it a
name with .tag.

.maxsubgroups the maximum number of discrete values allowed in .subgroup is configurable
with options("dtrackr.max_supported_groupings"=XX). The default is 16.
Large values produce unwieldy flow charts.

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

Examples

library(dplyr)
library(dtrackr)
survival::cgd %>% track() %>% dplyr::group_by(treat) %>%

count_subgroup(center) %>% history()

p_distinct Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting. See dplyr::distinct().

Usage

p_distinct(
.data,
...,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

p_excluded 73

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row
will be preserved. If omitted, will use all variables in the data frame. Named
arguments passed on to dplyr::distinct

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not
distinct, this keeps the first row of values.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

See Also

dplyr::distinct()

Examples

library(dplyr)
library(dtrackr)

tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% dplyr::group_by(Species) %>% dplyr::distinct() %>% history()

p_excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

p_excluded(.data, simplify = TRUE)

Arguments

.data a dataframe which may be grouped

simplify return a single summary dataframe of all exclusions.

74 p_exclude_all

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

p_exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph. Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an combinatorial
manner, i.e. the results EXCLUDE ALL rows that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by any criteria.

Usage

p_exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match any of the predicates will be excluded.
The RHS is a glue specification, defining the message, to be entered in the his-
tory graph for each predicate. This can refer to grouping variables variables
from the environment and {.excluded} and {.matched} or {.missing} (excluded

p_exclude_all 75

= matched+missing), {.count} and {.total} - group and overall counts respec-
tively, e.g. "excluding {.matched} items and {.missing} with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = TRUE).

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% capture_exclusions() %>% exclude_all(
Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
exclude_all(

These two criteria identify the same value and one item is excluded
a > 9 ~ "{.excluded} value > 9",
a == max(a) ~ "{.excluded} max value",

) %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9, a != max(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.

76 p_filter

exclude_all(a > 9 ~ "{.excluded} value > 9") %>%
exclude_all(a == max(a) ~ "{.excluded} max value") %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9) %>%
dplyr::filter(a != max(a)) %>%
nrow()

p_filter Filtering data

Description

Filter acts in the same way as in dplyr where predicates which evaluate to TRUE act to select items
to include, and items for which the predicate cannot be evaluated are excluded. For tracking prior to
the filter operation the size of each group is calculated {.count.in} and after the operation the output
size of each group {.count.out}. The grouping {.strata} is also available (if grouped) for reporting.
See dplyr::filter().

Usage

p_filter(
.data,
...,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept. Named arguments passed on to dplyr::filter

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

p_flowchart 77

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type the format type of the action typically an exclusion

.asOffshoot if the type is exclusion, .asOffshoot places the information box outside of the
main flow, as an exclusion.

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

p_flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe(s), with all the tracked data pipeline as stages
in the flowchart. Multiple dataframes can be plotted together in which case an attempt is made to
determine which parts are common.

Usage

p_flowchart(
.data,
filename = NULL,
size = std_size$full,
maxWidth = size$width,

78 p_flowchart

maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
landscape = size$rot != 0,
...

)

Arguments

.data the tracked dataframe(s) either as a single dataframe or as a list of dataframes.

filename a file name which will be where the formatted flowcharts are saved. If no exten-
sion is specified the output formats are determined by the formats parameter.

size a named list with 3 elements, length and width in inches and rotation. A prede-
fined set of standard sizes are available in the std_size object.

maxWidth a width (on the paper) in inches if size is not defined

maxHeight a height (on the paper) in inches if size is not defined

formats some of pdf,dot,svg,png,ps

defaultToHTML if the correct output format is not easy to determine from the context, default
providing HTML (TRUE) or to embedding the PNG (FALSE)

landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight
still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... ignored Named arguments passed on to p_get_as_dot

fill the default node fill colour, any R colour or hex value
fontsize the default font size in points
colour the default font colour, any R colour or hex value
rankdir the dot rank direction (one of TB,LR,BT,RL)
rounded should the node corners be rounded?
fontname the font to use. Must exist on the system.
bgcolour the background, may be "transparent", any R colour or hex value

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDF link if in
knitr and knitting latex or word type outputs, if file name is specified the output will also be saved
at the given location.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% dplyr::group_by(Species) %>% comment(.tag="step2") %>% flowchart()

p_full_join 79

p_full_join Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

Usage

p_full_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::full_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

80 p_full_join

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

p_full_join 81

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

82 p_get

p_get Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

Usage

p_get(.data)

Arguments

.data a dataframe which may be grouped

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe

• tags - a dataframe of tag-value pairs containing the summary of the data at named points in
the data flow (see tagged())

• nodes - a dataframe of the nodes of the flow chart

• edges - an edge list (as a dataframe) of the relationships between the nodes in the flow chart

• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
library(dtrackr)
graph = iris %>% track() %>% comment("A comment") %>% history()
print(graph)

p_get_as_dot 83

p_get_as_dot DOT output

Description

(advance usage) outputs a dtrackr history graph as a DOT string for rendering with Graphviz

Usage

p_get_as_dot(
.data,
fill = .defaultFill(),
fontsize = .defaultFontSize(),
colour = .defaultColour(),
rankdir = .defaultDirection(),
rounded = .defaultRounded(),
fontname = .defaultFontName(),
bgcolour = .defaultBgColour(),
...

)

Arguments

.data the tracked dataframe

fill the default node fill colour, any R colour or hex value

fontsize the default font size in points

colour the default font colour, any R colour or hex value

rankdir the dot rank direction (one of TB,LR,BT,RL)

rounded should the node corners be rounded?

fontname the font to use. Must exist on the system.

bgcolour the background, may be "transparent", any R colour or hex value

... not used

Value

a representation of the history graph in Graphviz dot format.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
dot = tmp %>% dplyr::group_by(Species) %>% comment(.tag="step2") %>% p_get_as_dot()
cat(dot)

84 p_group_by

p_group_by Stratifying your analysis

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a time-series. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches and be illegible. dtrackr will detect this issue and pause tracking the dataframe with a
warning. It is up to the user to the resume() tracking when the large number of groups have been re-
solved e.g. using a dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

p_group_by(
.data,
...,
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping. Named arguments passed on to dplyr::group_by

.add When FALSE, the default, group_by() will override existing groups. To
add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The
default is TRUE except when .data has been previously grouped with .drop
= FALSE. See group_by_drop_default() for details.

x A tbl()

.messages a set of glue specs. The glue code can use any global variable, or {.cols} which
is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or {.cols}.

p_group_modify 85

.tag if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is paused.

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

p_group_modify Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

Usage

p_group_modify(
.data,
...,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

86 p_include_any

Arguments

.data A grouped tibble

... Additional arguments passed on to .f Named arguments passed on to dplyr::group_modify

.f A function or formula to apply to each group.
If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

• . or .x to refer to the subset of rows of .tbl for the given group
• .y to refer to the key, a one row tibble with one column per grouping

variable that identifies the group
.keep are the grouping variables kept in .x

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type default "modify": used to define formatting

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% dplyr::group_modify(

function(d,g,...) { return(tibble::tibble(x=stats::runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

p_include_any Include any items matching a criteria

p_include_any 87

Description

Apply a set of inclusion criteria and record the actions of the filter to the dtrackr history graph.
Because of the ... filter specification, all parameters MUST BE NAMED. This function is the
opposite of exclude_all() and the filtering criteria work to identify rows to include i.e. the results
include anything that match any of the criteria. If na.rm=TRUE they also keep anything that cannot
be evaluated by the criteria.

Usage

p_include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match at least one of the predicates will be
included. The RHS is a glue specification, defining the message, to be entered
in the history graph for each predicate matched. This can refer to grouping
variables, variables from the environment and {.included} and {.matched} or
{.missing} (included = matched+missing), {.count} and {.total} - group and
overall counts respectively, e.g. "excluding {.matched} items and {.missing}
with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default TRUE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "inclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

88 p_inner_join

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% dplyr::group_by(Species) %>% include_any(
Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
include_any(

These two criteria identify the same value and one item is excluded
a > 1 ~ "{.included} value > 1",
a != min(a) ~ "{.included} everything but the smallest value",

) %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1, a != min(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
include_any(a > 1 ~ "{.included} value > 1") %>%
include_any(a != min(a) ~ "{.included} everything but the smallest value") %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1) %>%
dplyr::filter(a != min(a)) %>%
nrow()

p_inner_join Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

p_inner_join 89

Usage

p_inner_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::inner_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

90 p_inner_join

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

p_intersect 91

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Inner join
join = lhs %>% inner_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_intersect Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

92 p_intersect

Usage

p_intersect(
x,
y,
...,
.messages = "{.count.out} in intersection",
.headline = "Intersection"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::intersect()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)

p_left_join 93

not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_left_join Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

p_left_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

94 p_left_join

.headline = "Left join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::left_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

p_left_join 95

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which
match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

96 p_mutate

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Left join
join = lhs %>% left_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_mutate dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

p_mutate 97

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::mutate

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping
columns and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns.

This is useful for checking your work, as it displays inputs and outputs
side-by-side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the
columns used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the group-
ing variables and columns created by ... are kept.

.before,.after <tidy-select> Optionally, control where new columns should
appear (the default is to add to the right hand side). See relocate() for
more details.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::mutate()

98 p_nest

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

mutate
In this example we compare the column names of the input and the
output to identify the new columns created by the mutate operation as
the `.new_cols` variable
iris %>%

track() %>%
mutate(extra_col = NA_real_,

.messages="{.new_cols}",

.headline="Extra columns from mutate:") %>%
history()

p_nest Reshaping data using tidyr::nest

Description

A drop in replacement for tidyr::nest() which optionally takes a message and headline to store
in the history graph.

Usage

p_nest(
.data,
...,
.by = NULL,
.key = NULL,
.names_sep = NULL,
.messages = c("{.count.out} items"),
.headline = ""

)

Arguments

.data A data frame.

... <tidy-select> Columns to nest; these will appear in the inner data frames.
Specified using name-variable pairs of the form new_col = c(col1, col2, col3).
The right hand side can be any valid tidyselect expression.
If not supplied, then ... is derived as all columns not selected by .by, and will
use the column name from .key.

p_nest 99

[Deprecated]: previously you could write df %>% nest(x, y, z). Convert to
df %>% nest(data = c(x, y, z)).

.by <tidy-select> Columns to nest by; these will remain in the outer data frame.
.by can be used in place of or in conjunction with columns supplied through
....
If not supplied, then .by is derived as all columns not selected by

.key The name of the resulting nested column. Only applicable when ... isn’t spec-
ified, i.e. in the case of df %>% nest(.by = x).
If NULL, then "data" will be used by default.

.names_sep If NULL, the default, the inner names will come from the former outer names. If
a string, the new inner names will use the outer names with names_sep auto-
matically stripped. This makes names_sep roughly symmetric between nesting
and unnesting.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.count.in}, {.count.out} or {.strata}. Defaults to "{.count.out} items".

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the data dataframe result of the tidyr::nest function but with a history graph updated.

See Also

tidyr::nest()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(

films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

100 p_nest_join

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(

percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

p_nest_join Nest join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::nest_join()
for more details on the underlying functions.

Usage

p_nest_join(
x,
y,
...,

p_nest_join 101

.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} matched"),
.headline = "Nest join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::nest_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve
the join keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the
name of y is used.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

102 p_pause

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::nest_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Nest join
join = lhs %>% nest_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_pause Pause tracking the data frame.

p_pivot_longer 103

Description

Pausing tracking of a data frame may be required if an operation is about to be performed that
creates a lot of groupings or that you otherwise don’t want to pollute the history graph (e.g. maybe
selecting something using an anti-join). Once paused the history is not updated until a resume() is
called, or when the data frame is ungrouped (if auto is enabled).

Usage

p_pause(.data, auto = FALSE)

Arguments

.data a tracked dataframe

auto if TRUE the tracking will resume automatically when the number of groups has
fallen to a sensible level (default is FALSE)

Value

the .data dataframe with history graph tracking paused

Examples

iris %>% track() %>% pause() %>% history()

p_pivot_longer Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer() which optionally takes a message and headline
to store in the history graph.

Usage

p_pivot_longer(
data,
cols,
...,
cols_vary = "fastest",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",

104 p_pivot_longer

values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,
.messages = c("long format", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

data A data frame to pivot.

cols <tidy-select> Columns to pivot into longer format.

... Additional arguments passed on to methods.

cols_vary When pivoting cols into longer format, how should the output rows be arranged
relative to their original row number?

• "fastest", the default, keeps individual rows from cols close together in
the output. This often produces intuitively ordered output when you have at
least one key column from data that is not involved in the pivoting process.

• "slowest" keeps individual columns from cols close together in the out-
put. This often produces intuitively ordered output when you utilize all of
the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.
• If length >1, multiple columns will be created. In this case, one of names_sep

or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

p_pivot_longer 105

names_ptypes, values_ptypes
Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.

names_transform, values_transform
Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the result of the tidyr::pivot_longer but with a history graph updated.

See Also

tidyr::pivot_longer()

Examples

library(dplyr)
library(dtrackr)

starwars %>%

106 p_pivot_longer

track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(

percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

p_pivot_wider 107

p_pivot_wider Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider() which optionally takes a message and headline
to store in the history graph.

Usage

p_pivot_wider(
data,
...,
id_cols = NULL,
id_expand = FALSE,
names_from = name,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE,
names_repair = "check_unique",
values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL,
.messages = c("wide format", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods.

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

id_expand Should the values in the id_cols columns be expanded by expand() before piv-
oting? This results in more rows, the output will contain a complete expansion
of all possible values in id_cols. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the row values corresponding to
the expanded id_cols will be sorted.

108 p_pivot_wider

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple unique val-
ues, and multiple values_from columns are provided, in what order should the
resulting column names be combined?

• "fastest" varies names_from values fastest, resulting in a column naming
scheme of the form: value1_name1, value1_name2, value2_name1, value2_name2.
This is the default.

• "slowest" varies names_from values slowest, resulting in a column nam-
ing scheme of the form: value1_name1, value2_name1, value1_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by expand() before
pivoting? This results in more columns, the output will contain column names
corresponding to a complete expansion of all possible values in names_from.
Implicit factor levels that aren’t represented in the data will become explicit.
Additionally, the column names will be sorted, identical to what names_sort
would produce.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to different
values_from columns.

unused_fn Optionally, a function applied to summarize the values from the unused columns
(i.e. columns not identified by id_cols, names_from, or values_from).

p_pivot_wider 109

The default drops all unused columns from the result.
This can be a named list if you want to apply different aggregations to different
unused columns.
id_cols must be supplied for unused_fn to be useful, since otherwise all un-
specified columns will be considered id_cols.
This is similar to grouping by the id_cols then summarizing the unused columns
using unused_fn.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated.

See Also

tidyr::pivot_wider()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data

110 p_reframe

has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(
percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

p_reframe Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

p_reframe(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

p_relocate 111

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead. Named arguments passed on to dplyr::reframe

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::reframe()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% track()
tmp %>% dplyr::reframe(dplyr::tibble(

param = c("mean","min","max"),
value = c(mean(Petal.Length), min(Petal.Length), max(Petal.Length))
), .messages="length {param}: {value}") %>% history()

p_relocate dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

112 p_relocate

Usage

p_relocate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::relocate

.before,.after <tidy-select> Destination of columns selected by Sup-
plying neither will move columns to the left-hand side; specifying both is
an error.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::relocate()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

relocate, this shows how the columns can be reordered
iris %>%

p_rename 113

track() %>%
group_by(Species) %>%
relocate(

tidyselect::starts_with("Sepal"),
.after=Species,
.messages="{.cols}",
.headline="Order of columns from relocate:") %>%

history()

p_rename dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

114 p_rename_with

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(
Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

p_rename_with dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

p_rename_with 115

Usage

p_rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename_with

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename_with()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)

116 p_resume

iris %>%
track() %>%
group_by(Species) %>%
rename(
Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

p_resume Resume tracking the data frame.

Description

This may reset the grouping of the tracked data if the grouping structure has changed since the
data frame was paused. If you try and resume tracking a data frame with too many groups (as
defined by options("dtrackr.max_supported_groupings"=XX)) then the resume will fail and
the data frame will still be paused. This can be overridden by specifying a value for the .maxgroups
parameter.

Usage

p_resume(.data, ...)

Arguments

.data a tracked dataframe

... Named arguments passed on to p_group_by

.messages a set of glue specs. The glue code can use any global variable, or
{.cols} which is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or
{.cols}.

.tag if you want the summary data from this step in the future then give it a
name with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is
paused.

... In group_by(), variables or computations to group by. Computations are
always done on the ungrouped data frame. To perform computations on
the grouped data, you need to use a separate mutate() step before the
group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping.

Value

the .data data frame with history graph tracking resumed

p_right_join 117

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% pause() %>% resume() %>% history()

p_right_join Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

Usage

p_right_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Right join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::right_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to

118 p_right_join

y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

p_right_join 119

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join

120 p_select

join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_select dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_select(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

p_semi_join 121

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::select()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

select
The output of the select verb (here using tidyselect syntax) can be captured
and here all column names are being reported with the .cols variable.
iris %>%

track() %>%
group_by(Species) %>%
select(
tidyselect::starts_with("Sepal"),
.messages="{.cols}",
.headline="Output columns from select:") %>%

history()

p_semi_join Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

p_semi_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

122 p_semi_join

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::semi_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

p_set 123

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Semi join
join = lhs %>% semi_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_set Set the dtrackr history graph

Description

This is unlikely to be useful to an end user and is called automatically by many of the other functions
here. On the off chance you need to copy history metadata from one dataframe to another

Usage

p_set(.data, .graph)

Arguments

.data a dataframe which may be grouped

.graph a history graph list (consisting of nodes, edges, and head) see examples

Value

the .data dataframe with the history graph metadata set to the provided value

Examples

library(dplyr)
library(dtrackr)
mtcars %>% p_set(iris %>% comment("A comment") %>% p_get()) %>% history()

124 p_setdiff

p_setdiff Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_setdiff(
x,
y,
...,
.messages = "{.count.out} items in difference",
.headline = "Difference"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::setdiff()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",

p_slice 125

species == "Droid" ~ "{.included} droids"
)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_slice Slice operations

126 p_slice

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

p_slice_head 127

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice()

Examples

library(dplyr)
library(dtrackr)

an arbitrary 50 items from the iris dataframe is selected. The
history is tracked
iris %>% track() %>% slice(51:100) %>% history()

p_slice_head Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_head(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

128 p_slice_head

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_head

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

p_slice_max 129

See Also

dplyr::slice_head()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

p_slice_max Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_max(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_max

130 p_slice_max

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_max()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value

p_slice_min 131

iris %>% track() %>% group_by(Species) %>%
slice_max(prop=0.5, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} = {prop} (with ties)",

.headline="Widest 50% Sepals") %>%
history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

p_slice_min Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_min(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_min

132 p_slice_min

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_min()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value

p_slice_sample 133

iris %>% track() %>% group_by(Species) %>%
slice_max(prop=0.5, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} = {prop} (with ties)",

.headline="Widest 50% Sepals") %>%
history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

p_slice_sample Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_sample(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_sample

134 p_slice_sample

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_sample()

Examples

library(dplyr)
library(dtrackr)

In this example the iris dataframe is resampled 100 times with replacement
within each group and the

p_slice_tail 135

iris %>%
track() %>%
group_by(Species) %>%
slice_sample(n=100, replace=TRUE,

.messages="{.count.out} / {.count.in} = {n}",

.headline="100 {Species}") %>%
history()

p_slice_tail Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_tail(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_tail

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

136 p_slice_tail

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_tail()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

p_status 137

history()

p_status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary interim summarisation and put the result into the flowchart without disrupting the pipeline
flow.

Usage

p_status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... any normal dplyr::summarise specification, e.g. count=n() or av=mean(x),
etcetera.

.messages a character vector of glue specifications. A glue specification can refer to the
summary outputs, any grouping variables of .data, the {.strata}, or any variables
defined in the calling environment

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

138 p_summarise

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

p_summarise Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

p_summarise(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead. Named arguments passed on to dplyr::summarise

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.groups [Experimental] Grouping structure of the result.
• "drop_last": dropping the last level of grouping. This was the only

supported option before version 1.0.0.
• "drop": All levels of grouping are dropped.
• "keep": Same grouping structure as .data.
• "rowwise": Each row is its own group.

p_tagged 139

When .groups is not specified, it is chosen based on the number of rows
of the results:

• If all the results have 1 row, you get "drop_last".
• If the number of rows varies, you get "keep" (note that returning a

variable number of rows was deprecated in favor of reframe(), which
also unconditionally drops all levels of grouping).

In addition, a message informs you of that choice, unless the result is un-
grouped, the option "dplyr.summarise.inform" is set to FALSE, or when
summarise() is called from a function in a package.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::summarise()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% track()
tmp %>% dplyr::summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

p_tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

p_tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

140 p_track

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% dplyr::group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

p_track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

p_transmute 141

Usage

p_track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} variable which is the count of all rows, the {.count} variable which is
the count of rows in the current group and the {.strata} which describes the cur-
rent group. Defaults to the value of getOption("dtrackr.default_message").

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable which is nrow(.data),
or {.strata} a summary of the current group. Defaults to the value of getOption("dtrackr.default_headline").

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with additional history graph metadata, to allow tracking.

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% history()

p_transmute dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

142 p_transmute

Usage

p_transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::transmute()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

In this example we compare the column names of the input and the
output to identify the new columns created by the transmute operation as
the `.new_cols` variable
Here we do the same for a transmute()
iris %>%

track() %>%
group_by(Species, .add=TRUE) %>%

p_ungroup 143

transmute(
sepal.w = Sepal.Width-1,
sepal.l = Sepal.Length+1,
.messages="{.new_cols}",
.headline="New columns from transmute:") %>%

history()

p_ungroup Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any stratified
branches and acts as a specific type of status(), allowing you to generate some summary statistics
about the un-grouped data. See dplyr::ungroup().

Usage

p_ungroup(
x,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

x A tbl()

... variables to remove from the grouping.

.messages a set of glue specs. The glue code can use any any global variable, or {.count}.
the default is "total {.count} items"

.headline a headline glue spec. The glue code can use {.count} and {.strata}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but ungrouped with the history graph updated showing the ungroup operation
as a new stage.

See Also

dplyr::ungroup()

144 p_union

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% comment("A test")
tmp %>% dplyr::ungroup(.messages="{.count} items in combined") %>% history()

p_union Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_union(
x,
y,
...,
.messages = "{.count.out} unique items in union",
.headline = "Distinct union"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::union()

p_union 145

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

146 p_union_all

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_union_all Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_union_all(
x,
y,
...,
.messages = "{.count.out} items in union",
.headline = "Union"

)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::union_all()

p_union_all 147

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

148 p_unnest

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_unnest Reshaping data using tidyr::unnest

Description

A drop in replacement for tidyr::unnest() which optionally takes a message and headline to
store in the history graph. Older versions of tidyr::unnest can throw an error if .messages is
more than 1 item long and in that case use the dtrackr specific p_unnest will work instead.

Usage

p_unnest(
data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique",
.drop = deprecated(),
.id = deprecated(),
.sep = deprecated(),
.preserve = deprecated(),
.messages = "",
.headline = ""

)

Arguments

data A data frame.
cols <tidy-select> List-columns to unnest.

When selecting multiple columns, values from the same row will be recycled to
their common size.

... [Deprecated]: previously you could write df %>% unnest(x, y, z). Convert
to df %>% unnest(c(x, y, z)). If you previously created a new variable in
unnest() you’ll now need to do it explicitly with mutate(). Convert df %>%
unnest(y = fun(x, y, z)) to df %>% mutate(y = fun(x, y, z)) %>% unnest(y).

keep_empty By default, you get one row of output for each element of the list that you are
unchopping/unnesting. This means that if there’s a size-0 element (like NULL
or an empty data frame or vector), then that entire row will be dropped from
the output. If you want to preserve all rows, use keep_empty = TRUE to replace
size-0 elements with a single row of missing values.

p_unnest 149

ptype Optionally, a named list of column name-prototype pairs to coerce cols to, over-
riding the default that will be guessed from combining the individual values.
Alternatively, a single empty ptype can be supplied, which will be applied to all
cols.

names_sep If NULL, the default, the outer names will come from the inner names. If a
string, the outer names will be formed by pasting together the outer and the
inner column names, separated by names_sep.

names_repair Used to check that output data frame has valid names. Must be one of the
following options:

• "minimal": no name repair or checks, beyond basic existence,
• "unique": make sure names are unique and not empty,
• "check_unique": (the default), no name repair, but check they are unique,
• "universal": make the names unique and syntactic
• a function: apply custom name repair.
• tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())

See vctrs::vec_as_names() for more details on these terms and the strategies
used to enforce them.

.drop, .preserve
[Deprecated]: all list-columns are now preserved; If there are any that you don’t
want in the output use select() to remove them prior to unnesting.

.id [Deprecated]: convert df %>% unnest(x, .id = "id") to df %>% mutate(id = names(x)) %>% unnest(x)).

.sep [Deprecated]: use names_sep instead.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.count.in}, {.count.out} or {.strata}. Defaults to nothing. Older versions of
tidyr::unnest can throw an error if this is more than 1 item long and and in
that case use the dtrackr specific p_nest will work instead.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the result of the tidyr::unnest but with a history graph updated.

See Also

tidyr::unnest()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%

150 p_untrack

tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions
with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(

percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

p_untrack Remove tracking from the dataframe

reframe.trackr_df 151

Description

Remove tracking from the dataframe

Usage

p_untrack(.data)

Arguments

.data a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% untrack() %>% class()

reframe.trackr_df Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

S3 method for class 'trackr_df'
reframe(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

152 relocate.trackr_df

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::reframe()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% track()
tmp %>% dplyr::reframe(dplyr::tibble(

param = c("mean","min","max"),
value = c(mean(Petal.Length), min(Petal.Length), max(Petal.Length))
), .messages="length {param}: {value}") %>% history()

relocate.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
relocate(.data, ..., .messages = "", .headline = "", .tag = NULL)

relocate.trackr_df 153

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::relocate

.before,.after <tidy-select> Destination of columns selected by Sup-
plying neither will move columns to the left-hand side; specifying both is
an error.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::relocate()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

relocate, this shows how the columns can be reordered
iris %>%

track() %>%
group_by(Species) %>%
relocate(

tidyselect::starts_with("Sepal"),

154 rename.trackr_df

.after=Species,

.messages="{.cols}",

.headline="Order of columns from relocate:") %>%
history()

rename.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.
.messages a set of glue specs. The glue code can use any global variable, grouping variable,

{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

rename_with.trackr_df 155

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(
Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

rename_with.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

156 rename_with.trackr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename_with

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename_with()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(

resume 157

Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

resume Resume tracking the data frame.

Description

This may reset the grouping of the tracked data if the grouping structure has changed since the
data frame was paused. If you try and resume tracking a data frame with too many groups (as
defined by options("dtrackr.max_supported_groupings"=XX)) then the resume will fail and
the data frame will still be paused. This can be overridden by specifying a value for the .maxgroups
parameter.

Usage

resume(.data, ...)

Arguments

.data a tracked dataframe

... Named arguments passed on to p_group_by

.messages a set of glue specs. The glue code can use any global variable, or
{.cols} which is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or
{.cols}.

.tag if you want the summary data from this step in the future then give it a
name with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is
paused.

... In group_by(), variables or computations to group by. Computations are
always done on the ungrouped data frame. To perform computations on
the grouped data, you need to use a separate mutate() step before the
group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping. Named arguments passed on to
dplyr::group_by

.add When FALSE, the default, group_by() will override existing groups.
To add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a
new grouping variable called add, and conflicts with our naming con-
ventions.

.drop Drop groups formed by factor levels that don’t appear in the data?
The default is TRUE except when .data has been previously grouped
with .drop = FALSE. See group_by_drop_default() for details.

x A tbl()

158 right_join.trackr_df

Value

the .data data frame with history graph tracking resumed

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% pause() %>% resume() %>% history()

right_join.trackr_df Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
right_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Right join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::right_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).

right_join.trackr_df 159

join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.

160 right_join.trackr_df

• For inner joins, it checks both x and y. In this case, unmatched is also
allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)

save_dot 161

films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

save_dot Save DOT content to a file

Description

Convert a digraph in dot format to SVG and save it to a range of output file types

Usage

save_dot(
dot,
filename,
size = std_size$half,
maxWidth = size$width,
maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
landscape = size$rot != 0,
...

)

Arguments

dot a graphviz dot string
filename the full path of the file name (minus extension for multiple formats)
size a named list with 3 elements, length and width in inches and rotation. A prede-

fined set of standard sizes are available in the std_size object.
maxWidth a width (on the paper) in inches if size is not defined
maxHeight a height (on the paper) in inches if size is not defined
formats some of pdf,dot,svg,png,ps
landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight

still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... ignored

162 select.trackr_df

Value

a list with items paths with the absolute paths of the saved files as a named list, and svg as the SVG
string of the rendered dot file.

Examples

save_dot("digraph {A->B}",tempfile())

select.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
select(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

semi_join.trackr_df 163

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::select()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

select
The output of the select verb (here using tidyselect syntax) can be captured
and here all column names are being reported with the .cols variable.
iris %>%

track() %>%
group_by(Species) %>%
select(
tidyselect::starts_with("Sepal"),
.messages="{.cols}",
.headline="Output columns from select:") %>%

history()

semi_join.trackr_df Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
semi_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

164 semi_join.trackr_df

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::semi_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

setdiff.trackr_df 165

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Semi join
join = lhs %>% semi_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

setdiff.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
setdiff(
x,
y,
...,
.messages = "{.count.out} items in difference",
.headline = "Difference"

)

S3 method for class 'trackr_df'
setdiff(
x,
y,

166 setdiff.trackr_df

...,

.messages = "{.count.out} items in difference",

.headline = "Difference"
)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine Named arguments passed on to
tidyr::nest

.data A data frame.

.by <tidy-select> Columns to nest by; these will remain in the outer data
frame.
.by can be used in place of or in conjunction with columns supplied through
....
If not supplied, then .by is derived as all columns not selected by

.key The name of the resulting nested column. Only applicable when ... isn’t
specified, i.e. in the case of df %>% nest(.by = x).
If NULL, then "data" will be used by default.

.names_sep If NULL, the default, the inner names will come from the former
outer names. If a string, the new inner names will use the outer names
with names_sep automatically stripped. This makes names_sep roughly
symmetric between nesting and unnesting.

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::setdiff()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data

slice.trackr_df 167

rhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

slice.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),

168 slice.trackr_df

dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

slice_head.trackr_df 169

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice()

Examples

library(dplyr)
library(dtrackr)

an arbitrary 50 items from the iris dataframe is selected. The
history is tracked
iris %>% track() %>% slice(51:100) %>% history()

slice_head.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_head(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

170 slice_head.trackr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_head

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

slice_max.trackr_df 171

See Also

dplyr::slice_head()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

slice_max.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_max(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.

172 slice_max.trackr_df

For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_max

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_max()

Examples

library(dplyr)
library(dtrackr)

slice_min.trackr_df 173

Subset the data by the maximum of a given value
iris %>% track() %>% group_by(Species) %>%

slice_max(prop=0.5, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} = {prop} (with ties)",
.headline="Widest 50% Sepals") %>%

history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

slice_min.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_min(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.

174 slice_min.trackr_df

Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_min

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_min()

slice_sample.trackr_df 175

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value
iris %>% track() %>% group_by(Species) %>%

slice_max(prop=0.5, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} = {prop} (with ties)",
.headline="Widest 50% Sepals") %>%

history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

slice_sample.trackr_df

Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_sample(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

176 slice_sample.trackr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_sample

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

slice_tail.trackr_df 177

See Also

dplyr::slice_sample()

Examples

library(dplyr)
library(dtrackr)

In this example the iris dataframe is resampled 100 times with replacement
within each group and the
iris %>%

track() %>%
group_by(Species) %>%
slice_sample(n=100, replace=TRUE,

.messages="{.count.out} / {.count.in} = {n}",

.headline="100 {Species}") %>%
history()

slice_tail.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_tail(
.data,
...,
.messages = c("subset data", "{.count.in} before", "{.count.out} after"),
.headline = .defaultHeadline()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_tail

178 slice_tail.trackr_df

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_tail()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

status 179

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary interim summarisation and put the result into the flowchart without disrupting the pipeline
flow.

Usage

status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... any normal dplyr::summarise specification, e.g. count=n() or av=mean(x),
etcetera.

.messages a character vector of glue specifications. A glue specification can refer to the
summary outputs, any grouping variables of .data, the {.strata}, or any variables
defined in the calling environment

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

180 std_size

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% dplyr::group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

std_size Standard paper sizes

Description

A list of standard paper sizes for outputting flowcharts or other dot graphs. These include width and
height dimensions in inches and can be used as one way to specify the output size of a dot graph,
including flowcharts (see the size parameter of flowchart()).

Usage

std_size

Format

An object of class list of length 12.

Details

The sizes available are A4, A5, full (fits a portrait A4 with margins), half (half an A4 with mar-
gins), third, two_third, quarter, sixth (all with reference to an A4 page with margins). There
are 2 landscape sizes A4_landscape and full_landscape which fit an A4 page with or without
margins. There are also 2 slide dimensions, to fit with standard presentation software dimensions.

This is just a convenience. Similar effects can be achieved by providing width and height param-
eters to flowchart() directly.

summarise.trackr_df 181

summarise.trackr_df Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

S3 method for class 'trackr_df'
summarise(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::summarise()

182 tagged

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% track()
tmp %>% dplyr::summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

track 183

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% dplyr::group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

Usage

track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} variable which is the count of all rows, the {.count} variable which is
the count of rows in the current group and the {.strata} which describes the cur-
rent group. Defaults to the value of getOption("dtrackr.default_message").

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable which is nrow(.data),
or {.strata} a summary of the current group. Defaults to the value of getOption("dtrackr.default_headline").

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with additional history graph metadata, to allow tracking.

184 transmute.trackr_df

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% history()

transmute.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

ungroup.trackr_df 185

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::transmute()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

In this example we compare the column names of the input and the
output to identify the new columns created by the transmute operation as
the `.new_cols` variable
Here we do the same for a transmute()
iris %>%

track() %>%
group_by(Species, .add=TRUE) %>%
transmute(
sepal.w = Sepal.Width-1,
sepal.l = Sepal.Length+1,
.messages="{.new_cols}",
.headline="New columns from transmute:") %>%

history()

ungroup.trackr_df Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any stratified
branches and acts as a specific type of status(), allowing you to generate some summary statistics
about the un-grouped data. See dplyr::ungroup().

Usage

S3 method for class 'trackr_df'
ungroup(
x,
...,
.messages = .defaultMessage(),

186 union.trackr_df

.headline = .defaultHeadline(),

.tag = NULL
)

Arguments

x A tbl()

... variables to remove from the grouping.

.messages a set of glue specs. The glue code can use any any global variable, or {.count}.
the default is "total {.count} items"

.headline a headline glue spec. The glue code can use {.count} and {.strata}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but ungrouped with the history graph updated showing the ungroup operation
as a new stage.

See Also

dplyr::ungroup()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% dplyr::group_by(Species) %>% comment("A test")
tmp %>% dplyr::ungroup(.messages="{.count} items in combined") %>% history()

union.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

union.trackr_df 187

Usage

S3 method for class 'trackr_df'
union(
x,
y,
...,
.messages = "{.count.out} unique items in union",
.headline = "Distinct union"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::union()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()

188 union_all.trackr_df

nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

union_all.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
union_all(
x,

union_all.trackr_df 189

y,
...,
.messages = "{.count.out} items in union",
.headline = "Union"

)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::union_all()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

190 unnest.trackr_df

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

unnest.trackr_df Reshaping data using tidyr::unnest

Description

A drop in replacement for tidyr::unnest() which optionally takes a message and headline to
store in the history graph. Older versions of tidyr::unnest can throw an error if .messages is
more than 1 item long and in that case use the dtrackr specific p_unnest will work instead.

Usage

S3 method for class 'trackr_df'
unnest(
data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,

unnest.trackr_df 191

names_repair = "check_unique",
.drop = deprecated(),
.id = deprecated(),
.sep = deprecated(),
.preserve = deprecated(),
.messages = "",
.headline = ""

)

Arguments

data A data frame.

cols <tidy-select> List-columns to unnest.
When selecting multiple columns, values from the same row will be recycled to
their common size.

... [Deprecated]: previously you could write df %>% unnest(x, y, z). Convert
to df %>% unnest(c(x, y, z)). If you previously created a new variable in
unnest() you’ll now need to do it explicitly with mutate(). Convert df %>%
unnest(y = fun(x, y, z)) to df %>% mutate(y = fun(x, y, z)) %>% unnest(y).

keep_empty By default, you get one row of output for each element of the list that you are
unchopping/unnesting. This means that if there’s a size-0 element (like NULL
or an empty data frame or vector), then that entire row will be dropped from
the output. If you want to preserve all rows, use keep_empty = TRUE to replace
size-0 elements with a single row of missing values.

ptype Optionally, a named list of column name-prototype pairs to coerce cols to, over-
riding the default that will be guessed from combining the individual values.
Alternatively, a single empty ptype can be supplied, which will be applied to all
cols.

names_sep If NULL, the default, the outer names will come from the inner names. If a
string, the outer names will be formed by pasting together the outer and the
inner column names, separated by names_sep.

names_repair Used to check that output data frame has valid names. Must be one of the
following options:

• "minimal": no name repair or checks, beyond basic existence,
• "unique": make sure names are unique and not empty,
• "check_unique": (the default), no name repair, but check they are unique,
• "universal": make the names unique and syntactic
• a function: apply custom name repair.
• tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())

See vctrs::vec_as_names() for more details on these terms and the strategies
used to enforce them.

.drop, .preserve
[Deprecated]: all list-columns are now preserved; If there are any that you don’t
want in the output use select() to remove them prior to unnesting.

192 unnest.trackr_df

.id [Deprecated]: convert df %>% unnest(x, .id = "id") to df %>% mutate(id = names(x)) %>% unnest(x)).

.sep [Deprecated]: use names_sep instead.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.count.in}, {.count.out} or {.strata}. Defaults to nothing. Older versions of
tidyr::unnest can throw an error if this is more than 1 item long and and in
that case use the dtrackr specific p_nest will work instead.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

Value

the result of the tidyr::unnest but with a history graph updated.

See Also

tidyr::unnest()

Examples

library(dplyr)
library(dtrackr)

starwars %>%
track() %>%
tidyr::unnest(starships, keep_empty = TRUE) %>%
tidyr::nest(world_data = c(-homeworld)) %>%
history()

There is a problem with `tidyr::unnest` that means if you want to override the
`.messages` option at the moment it will most likely fail. Forcing the use of
the specific `dtrackr::p_unnest` version solves this problem, until hopefully it is
resolved in `tidyr`:
starwars %>%

track() %>%
p_unnest(
films,
.messages = c("{.count.in} characters", "{.count.out} appearances")

) %>%
dplyr::group_by(gender) %>%
tidyr::nest(

people = c(-gender, -species, -homeworld),
.messages = c("{.count.in} appearances", "{.count.out} planets")

) %>%
status() %>%
history()

This example includes pivoting and nesting. The CMS patient care data
has multiple tests per institution in a long format, and observed /
denominator types. Firstly we pivot the data to allow us to easily calculate
a total percentage for each institution. This is duplicated for every test
so we nest the tests to get to one row per institution. Those institutions

untrack 193

with invalid scores are excluded.
cms_history = tidyr::cms_patient_care %>%

track() %>%
tidyr::pivot_wider(names_from = type, values_from = score) %>%
dplyr::mutate(
percentage = sum(observed) / sum(denominator) * 100,
.by = c(ccn, facility_name)

) %>%
tidyr::nest(

results = c(measure_abbr, observed, denominator),
.messages = c("{.count.in} test results", "{.count.out} facilities")

) %>%
exclude_all(

percentage > 100 ~ "{.excluded} facilities with anomalous percentages",
na.rm = TRUE

)

print(cms_history %>% dtrackr::history())

not run in examples:
if (interactive()) {

cms_history %>% flowchart()
}

untrack Remove tracking from the dataframe

Description

Remove tracking from the dataframe

Usage

untrack(.data)

Arguments

.data a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% untrack() %>% class()

Index

∗ datasets
std_size, 180

?dplyr_by, 23, 43, 76, 97, 111, 126, 128, 130,
132, 134, 135, 138, 168, 170, 172,
174, 176, 178

?join_by, 26, 35, 40, 47, 61, 79, 89, 94, 101,
117, 122, 159, 164

add_count.trackr_df, 4
add_tally, 7
anti_join.trackr_df, 8
arrange(), 126, 128, 130, 132, 134, 136, 168,

170, 172, 174, 176, 178
arrange.trackr_df, 10

bind_cols, 12
bind_rows, 13

capture_exclusions, 15
comment, 16
count_subgroup, 17
cross_join(), 26, 35, 40, 47, 61, 79, 89, 94,

101, 118, 122, 159, 164

distinct.trackr_df, 18
dot2svg, 19
dplyr-locale, 10, 63
dplyr::add_count, 5, 58
dplyr::add_count(), 4, 6, 7, 10, 42, 57–59,

62, 96, 111, 113, 114, 120, 141, 152,
154, 155, 162, 184

dplyr::add_tally, 7
dplyr::add_tally(), 4, 7, 8, 10, 42, 57, 59,

60, 62, 96, 111, 113, 114, 120, 141,
152, 154, 155, 162, 184

dplyr::anti_join, 61
dplyr::anti_join(), 9, 61, 62
dplyr::arrange, 10, 63
dplyr::arrange(), 4, 7, 10, 11, 42, 57, 59,

62, 64, 96, 111, 113, 114, 120, 141,
152, 154, 155, 162, 184

dplyr::bind_cols, 12
dplyr::bind_cols(), 12, 14, 37, 64–66, 91,

124, 144, 146, 165, 186, 188
dplyr::bind_rows, 14
dplyr::bind_rows(), 12, 14, 37, 64, 66, 91,

124, 144, 146, 165, 186, 188
dplyr::distinct, 19, 73
dplyr::distinct(), 18, 19, 72, 73
dplyr::filter, 23, 76
dplyr::filter(), 23, 24, 76, 77
dplyr::full_join, 26, 79
dplyr::full_join(), 26, 28, 79, 81
dplyr::group_by, 29, 84, 157
dplyr::group_by(), 29, 30, 84, 85
dplyr::group_modify, 31, 86
dplyr::group_modify(), 30, 31, 85, 86
dplyr::inner_join, 34, 89
dplyr::inner_join(), 34, 36, 88, 91
dplyr::intersect(), 12, 14, 37, 64, 66, 91,

124, 144, 146, 165, 186, 188
dplyr::left_join, 39, 94
dplyr::left_join(), 39, 41, 93, 96
dplyr::mutate, 43, 97
dplyr::mutate(), 4, 7, 10, 42, 43, 57, 59, 62,

96, 97, 111, 113, 114, 120, 141, 152,
154, 155, 162, 184

dplyr::nest_join, 46, 101
dplyr::nest_join(), 46, 48, 100, 102
dplyr::reframe, 111
dplyr::reframe(), 111, 152
dplyr::relocate, 112, 153
dplyr::relocate(), 4, 7, 10, 42, 57, 59, 62,

96, 111–114, 120, 141, 152–155,
162, 184

dplyr::rename, 113, 154
dplyr::rename(), 4, 7, 10, 42, 57, 59, 62, 96,

111, 113, 114, 120, 141, 152, 154,
155, 162, 184

dplyr::rename_with, 115, 156

194

INDEX 195

dplyr::rename_with(), 4, 7, 10, 42, 57, 59,
62, 96, 111, 113–115, 120, 141, 152,
154–156, 162, 184

dplyr::right_join, 117, 158
dplyr::right_join(), 117, 119, 158, 160
dplyr::select(), 4, 7, 10, 42, 57, 59, 62, 96,

111, 113, 114, 120, 121, 141, 152,
154, 155, 162, 163, 184

dplyr::semi_join, 122, 164
dplyr::semi_join(), 121, 122, 163, 164
dplyr::setdiff(), 12, 14, 37, 64, 66, 91,

124, 144, 146, 165, 166, 186, 188
dplyr::slice, 126, 168
dplyr::slice(), 126, 127, 129, 131, 133,

135, 167, 169, 171, 173, 175, 177
dplyr::slice_head, 128, 170
dplyr::slice_head(), 126, 127, 129, 131,

133, 135, 167, 169, 171, 173, 175,
177

dplyr::slice_max, 129, 172
dplyr::slice_max(), 126, 127, 129–131,

133, 135, 168, 169, 171–173, 175,
177

dplyr::slice_min, 131, 174
dplyr::slice_min(), 126, 127, 129,

131–133, 135, 168, 169, 171,
173–175, 177

dplyr::slice_sample, 133, 176
dplyr::slice_sample(), 126, 127, 129, 131,

133–135, 168, 169, 171, 173, 175,
177

dplyr::slice_tail, 135, 177
dplyr::slice_tail(), 126, 127, 129, 131,

133, 135, 136, 168, 169, 171, 173,
175, 177, 178

dplyr::summarise, 138
dplyr::summarise(), 110, 138, 139, 151,

181
dplyr::transmute(), 4, 7, 10, 42, 57, 59, 62,

96, 111, 113, 114, 120, 141, 142,
152, 154, 155, 162, 184, 185

dplyr::ungroup(), 143, 185, 186
dplyr::union(), 12, 14, 37, 64, 66, 91, 124,

144, 146, 165, 186, 188
dplyr::union_all(), 12, 14, 37, 64, 66, 91,

124, 144, 146, 165, 186, 188, 189

exclude_all, 21
exclude_all(), 32, 87

excluded, 20
expand(), 53, 54, 107, 108
extract(), 50, 104

filter.trackr_df, 23
flowchart, 24
flowchart(), 180
full_join.trackr_df, 26

generics::intersect(), 38, 92
generics::union(), 144, 187
group_by(), 5, 7, 23, 43, 58, 76, 97, 111, 126,

128, 130, 132, 134, 135, 138, 168,
170, 172, 174, 176, 178

group_by.trackr_df, 29
group_by_drop_default(), 29, 84, 157
group_modify.trackr_df, 30

history, 31
history(), 56

include_any, 32
inner_join.trackr_df, 34
intersect.trackr_df, 37

join_by(), 26, 35, 39, 40, 47, 61, 79, 89, 94,
101, 117, 122, 158, 159, 164

left_join.trackr_df, 39
locale, 11, 63

match(), 27, 35, 40, 47, 61, 80, 90, 94, 101,
118, 122, 159, 164

merge(), 27, 35, 40, 47, 61, 80, 90, 94, 101,
118, 122, 159, 164

mutate.trackr_df, 42

nest.trackr_df, 44
nest_join.trackr_df, 46

p_add_count, 57
p_add_tally, 59
p_anti_join, 60
p_arrange, 62
p_bind_cols, 64
p_bind_rows, 66
p_capture_exclusions, 68
p_clear, 68
p_comment, 69
p_copy, 70

196 INDEX

p_count_if, 70
p_count_subgroup, 71
p_distinct, 72
p_exclude_all, 74
p_excluded, 73
p_filter, 76
p_flowchart, 77
p_full_join, 79
p_get, 82
p_get(), 57
p_get_as_dot, 25, 56, 78, 83
p_group_by, 84, 116, 157
p_group_modify, 85
p_include_any, 86
p_inner_join, 88
p_intersect, 91
p_left_join, 93
p_mutate, 96
p_nest, 98
p_nest_join, 100
p_pause, 102
p_pivot_longer, 103
p_pivot_wider, 107
p_reframe, 110
p_relocate, 111
p_rename, 113
p_rename_with, 114
p_resume, 116
p_right_join, 117
p_select, 120
p_semi_join, 121
p_set, 123
p_setdiff, 124
p_slice, 125
p_slice_head, 127
p_slice_max, 129
p_slice_min, 131
p_slice_sample, 133
p_slice_tail, 135
p_status, 137
p_summarise, 138
p_tagged, 139
p_track, 140
p_transmute, 141
p_ungroup, 143
p_union, 144
p_union_all, 146
p_unnest, 148

p_untrack, 150
pause, 48
pivot_longer.trackr_df, 49
pivot_wider.trackr_df, 52
plot.trackr_graph, 56
print.trackr_graph, 57

reframe(), 111, 138, 139, 151, 181
reframe.trackr_df, 151
relocate(), 43, 97
relocate.trackr_df, 152
rename.trackr_df, 154
rename_with.trackr_df, 155
resume, 157
right_join.trackr_df, 158
rlang::as_function(), 6, 149, 191

save_dot, 161
select.trackr_df, 162
semi_join.trackr_df, 163
separate(), 50, 104
setdiff.trackr_df, 165
slice.trackr_df, 167
slice_head.trackr_df, 169
slice_max.trackr_df, 171
slice_min.trackr_df, 173
slice_sample.trackr_df, 175
slice_tail.trackr_df, 177
status, 179
status(), 143, 185
std_size, 25, 78, 161, 180
stringi::stri_locale_list(), 11, 63
summarise.trackr_df, 181

tagged, 182
tagged(), 32, 82
tbl(), 29, 84, 143, 157, 186
tidyr::nest, 166
tidyr::nest(), 44, 45, 98, 99
tidyr::pivot_longer(), 49, 51, 103, 105
tidyr::pivot_wider(), 52, 55, 107, 109
tidyr::unnest, 5
tidyr::unnest(), 148, 149, 190, 192
tidyr_legacy, 6, 149, 191
track, 183
transmute.trackr_df, 184

ungroup.trackr_df, 185
union.trackr_df, 186

INDEX 197

union_all.trackr_df, 188
unnest.trackr_df, 190
untrack, 193

vctrs::vec_as_names(), 6, 12, 51, 54, 105,
108, 149, 191

	add_count.trackr_df
	add_tally
	anti_join.trackr_df
	arrange.trackr_df
	bind_cols
	bind_rows
	capture_exclusions
	comment
	count_subgroup
	distinct.trackr_df
	dot2svg
	excluded
	exclude_all
	filter.trackr_df
	flowchart
	full_join.trackr_df
	group_by.trackr_df
	group_modify.trackr_df
	history
	include_any
	inner_join.trackr_df
	intersect.trackr_df
	left_join.trackr_df
	mutate.trackr_df
	nest.trackr_df
	nest_join.trackr_df
	pause
	pivot_longer.trackr_df
	pivot_wider.trackr_df
	plot.trackr_graph
	print.trackr_graph
	p_add_count
	p_add_tally
	p_anti_join
	p_arrange
	p_bind_cols
	p_bind_rows
	p_capture_exclusions
	p_clear
	p_comment
	p_copy
	p_count_if
	p_count_subgroup
	p_distinct
	p_excluded
	p_exclude_all
	p_filter
	p_flowchart
	p_full_join
	p_get
	p_get_as_dot
	p_group_by
	p_group_modify
	p_include_any
	p_inner_join
	p_intersect
	p_left_join
	p_mutate
	p_nest
	p_nest_join
	p_pause
	p_pivot_longer
	p_pivot_wider
	p_reframe
	p_relocate
	p_rename
	p_rename_with
	p_resume
	p_right_join
	p_select
	p_semi_join
	p_set
	p_setdiff
	p_slice
	p_slice_head
	p_slice_max
	p_slice_min
	p_slice_sample
	p_slice_tail
	p_status
	p_summarise
	p_tagged
	p_track
	p_transmute
	p_ungroup
	p_union
	p_union_all
	p_unnest
	p_untrack
	reframe.trackr_df
	relocate.trackr_df
	rename.trackr_df
	rename_with.trackr_df
	resume
	right_join.trackr_df
	save_dot
	select.trackr_df
	semi_join.trackr_df
	setdiff.trackr_df
	slice.trackr_df
	slice_head.trackr_df
	slice_max.trackr_df
	slice_min.trackr_df
	slice_sample.trackr_df
	slice_tail.trackr_df
	status
	std_size
	summarise.trackr_df
	tagged
	track
	transmute.trackr_df
	ungroup.trackr_df
	union.trackr_df
	union_all.trackr_df
	unnest.trackr_df
	untrack
	Index

