
Package ‘future.batchtools’
August 26, 2025

Version 0.20.0

Depends R (>= 3.2.0), parallelly, future (>= 1.58.0)

Imports batchtools (>= 0.9.17), utils

Suggests globals, future.apply, listenv, markdown, R.rsp

VignetteBuilder R.rsp

Title A Future API for Parallel and Distributed Processing using
'batchtools'

Description Implementation of the Future API <doi:10.32614/RJ-2021-
048> on top of the 'batchtools' package.
This allows you to process futures, as defined by the 'future' package,
in parallel out of the box, not only on your local machine or ad-hoc
cluster of machines, but also via high-performance compute ('HPC') job
schedulers such as 'LSF', 'OpenLava', 'Slurm', 'SGE', and 'TORQUE' / 'PBS',
e.g. 'y <- future.apply::future_lapply(files, FUN = process)'.

License LGPL (>= 2.1)

LazyLoad TRUE

URL https://future.batchtools.futureverse.org,

https://github.com/futureverse/future.batchtools

BugReports https://github.com/futureverse/future.batchtools/issues

Language en-US

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7579-5165>)

Maintainer Henrik Bengtsson <henrikb@braju.com>

Repository CRAN

Date/Publication 2025-08-25 22:50:02 UTC

1

https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.32614/RJ-2021-048
https://future.batchtools.futureverse.org
https://github.com/futureverse/future.batchtools
https://github.com/futureverse/future.batchtools/issues
https://orcid.org/0000-0002-7579-5165

2 batchtools_bash

Contents
batchtools_bash . 2
batchtools_interactive . 5
batchtools_local . 7
batchtools_lsf . 8
batchtools_multicore . 12
batchtools_openlava . 14
batchtools_sge . 18
batchtools_slurm . 23
batchtools_torque . 27
future.batchtools . 32
zzz-future.batchtools.options . 33

Index 34

batchtools_bash A batchtools bash backend that resolves futures sequentially via a
Bash template script

Description

The batchtools_bash backend was added to illustrate how to write a custom future.batchtools
backend that uses a templated job script. Please see the source code, for details.

Usage

batchtools_bash(
...,
template = "bash",
fs.latency = 0,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success")

)

makeClusterFunctionsBash(template = "bash", fs.latency = 0, ...)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/bash.tmpl part of this package (see
below).

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

batchtools_bash 3

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

... Not used.

Details

Batchtools bash futures use batchtools cluster functions created by makeClusterFunctionsBash()
and requires that bash is installed on the current machine and the timeout command is available.

The default template script templates/bash.tmpl can be found in:

system.file("templates", "bash.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template
#
Author: Henrik Bengtsson
##

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

Redirect stdout and stderr to the batchtools log file
exec > <%= log.file %> 2>&1

<%

4 batchtools_bash

Maximum runtime?
runtime <- resources[["timeout"]]
resources[["timeout"]] <- NULL
timeout <- if (is.null(runtime)) "" else sprintf("timeout %s", runtime)

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]
resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

%>

<% if (length(startup) > 0) {
writeLines(startup)

} %>

<% if (length(modules) > 0) {
writeLines(c(
'echo "Load environment modules:"',
sprintf('echo "- modules: %s"', paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),
"module list"

))
} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."
echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"
echo "- job uri: '<%= uri %>'"
<%= timeout %> Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"

batchtools_interactive 5

echo

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

Value

makeClusterFunctionsBash() returns a ClusterFunctions object.

Examples

library(future)

Limit runtime to 30 seconds per future
plan(future.batchtools::batchtools_bash, resources = list(runtime = 30))

message("Main process ID: ", Sys.getpid())

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores()),

pid = Sys.getpid(),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_interactive

A batchtools backend that resolves futures sequentially in the current
R session

Description

The batchtools interactive backend is useful for verifying parts of your batchtools setup locally,
while still being able to do interactive debugging.

6 batchtools_interactive

Usage

batchtools_interactive(
...,
fs.latency = 0,
delete = getOption("future.batchtools.delete", "on-success")

)

Arguments

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

... Not used.

Details

Batchtools interactive futures use batchtools cluster functions created by batchtools::makeClusterFunctionsInteractive()
with external = TRUE.

An alternative to the batchtools interactive backend is to use plan(future::sequential), which
is a faster way process futures sequentially and that also can be debugged interactively.

Examples

library(future)
plan(future.batchtools::batchtools_interactive)

message("Main process ID: ", Sys.getpid())

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores()),

pid = Sys.getpid(),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_local 7

batchtools_local A batchtools backend that resolves futures sequentially in transient
background R sessions

Description

The batchtools local backend is useful for verifying parts of your batchtools setup locally, before
using a more advanced backend such as the job-scheduler backends.

Usage

batchtools_local(
...,
fs.latency = 0,
delete = getOption("future.batchtools.delete", "on-success")

)

Arguments

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

... Not used.

Details

Batchtools local futures use batchtools cluster functions created by batchtools::makeClusterFunctionsInteractive()
with external = TRUE.

An alternative to the batchtools interactive backend is to use plan(future::cluster, workers =
I(1)).

Examples

library(future)
plan(future.batchtools::batchtools_local)

message("Main process ID: ", Sys.getpid())

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

8 batchtools_lsf

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores()),

pid = Sys.getpid(),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_lsf A batchtools LSF backend resolves futures in parallel via a Load Shar-
ing Facility (LSF) job scheduler

Description

A batchtools LSF backend resolves futures in parallel via a Load Sharing Facility (LSF) job sched-
uler

Usage

batchtools_lsf(
...,
template = "lsf",
scheduler.latency = 1,
fs.latency = 65,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success"),
workers = getOption("future.batchtools.workers", default = 100L)

)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/lsf.tmpl part of this package (see
below).

scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

batchtools_lsf 9

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

workers The maximum number of workers the batchtools backend may use at any time,
which for HPC schedulers corresponds to the maximum number of queued jobs.
The default is getOption("future.batchtools.workers", 100).

... Not used.

Details

Batchtools Load Sharing Facility (LSF) futures use batchtools cluster functions created by batchtools::makeClusterFunctionsLSF(),
which are used to interact with the LSF job scheduler. This requires that LSF commands bsub,
bjobs, and bkill are available on the current machine.

The default template script templates/lsf.tmpl can be found in:

system.file("templates", "lsf.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template for LSF
#
Author: Henrik Bengtsson
##

Job name
#BSUB -J <%= job.name %>

Direct streams to logfile
#BSUB -o <%= log.file %>

10 batchtools_lsf

Resources needed
<%
Should scheduler "details" be seen?
details <- isTRUE(resources[["details"]])
resources[["details"]] <- NULL

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]
resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

As-is resource specifications
job_declarations <- resources[["asis"]]
resources[["asis"]] <- NULL

Remaining resources are assumed to be of type '-<key>=<value>'
opts <- unlist(resources, use.names = TRUE)
opts <- sprintf("-%s=%s", names(opts), opts)
job_declarations <- sprintf("#BSUB %s", c(job_declarations, opts))
writeLines(job_declarations)

%>

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

<% if (length(job_declarations) > 0) {
writeLines(c(
"echo 'Job submission declarations:'",
sprintf("echo '%s'", job_declarations),
"echo"

))
} %>

<% if (details) { %>
if command -v bjobs > /dev/null; then
echo "Job information:"
bjobs -l "${LSB_JOBID}"

batchtools_lsf 11

echo
fi
<% } %>

<% if (length(startup) > 0) {
writeLines(startup)

} %>

<% if (length(modules) > 0) {
writeLines(c(
"echo 'Load environment modules:'",
sprintf("echo '- modules: %s'", paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),
"module list"

))
} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."
echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"
echo "- job uri: '<%= uri %>'"
Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"
echo

<% if (details) { %>
if command -v bjobs > /dev/null; then
echo "Job summary:"
bjobs -l "${LSB_JOBID}"

fi
<% } %>

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

12 batchtools_multicore

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

References

• https://en.wikipedia.org/wiki/IBM_Spectrum_LSF

Examples

library(future)

Limit runtime to 10 minutes and total memory to 400 MiB per future,
request a parallel environment with four slots on a single host.
Submit to the 'freecycle' queue. Load environment modules 'r' and
'jags'. Report on job details at startup and at the end of the job.
plan(future.batchtools::batchtools_lsf, resources = list(

W = "00:10:00", M = "400",
asis = c("-n 4", "-R 'span[hosts=1]'", "-q freecycle"),
modules = c("r", "jags"),
details = TRUE

))

f <- future({
data.frame(

hostname = Sys.info()[["nodename"]],
os = Sys.info()[["sysname"]],

cores = unname(parallelly::availableCores()),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_multicore A batchtools backend that resolves futures in parallel via forked back-
ground R processes

Description

A batchtools backend that resolves futures in parallel via forked background R processes

Usage

batchtools_multicore(
...,
workers = availableCores(constraints = "multicore"),

https://en.wikipedia.org/wiki/IBM_Spectrum_LSF

batchtools_multicore 13

fs.latency = 0,
delete = getOption("future.batchtools.delete", "on-success")

)

Arguments

workers The number of multicore processes to be available for concurrent batchtools
multicore futures.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

... Not used.

Details

Batchtools multicore futures use batchtools cluster functions created by batchtools::makeClusterFunctionsMulticore()
with ncpus = workers.

An alternative to the batchtools multicore backend is to use plan(future::multicore).

Examples

library(future)
plan(future.batchtools::batchtools_multicore, workers = 2)

message("Main process ID: ", Sys.getpid())

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores()),

pid = Sys.getpid(),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

14 batchtools_openlava

batchtools_openlava A batchtools openlava backend resolves futures in parallel via a
OpenLava job scheduler

Description

A batchtools openlava backend resolves futures in parallel via a OpenLava job scheduler

Usage

batchtools_openlava(
...,
template = "openlava",
scheduler.latency = 1,
fs.latency = 65,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success"),
workers = getOption("future.batchtools.workers", default = 100L)

)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/openlava.tmpl part of this package
(see below).

scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

batchtools_openlava 15

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

workers The maximum number of workers the batchtools backend may use at any time,
which for HPC schedulers corresponds to the maximum number of queued jobs.
The default is getOption("future.batchtools.workers", 100).

... Not used.

Details

Batchtools OpenLava futures use batchtools cluster functions created by batchtools::makeClusterFunctionsOpenLava(),
which are used to interact with the OpenLava job scheduler. This requires that OpenLava commands
bsub, bjobs, and bkill are available on the current machine.

The default template script templates/openlava.tmpl can be found in:

system.file("templates", "openlava.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template for OpenLava
#
Author: Henrik Bengtsson
##

Job name
#BSUB -J <%= job.name %>

Direct streams to logfile
#BSUB -o <%= log.file %>

Resources needed
<%
Should scheduler "details" be seen?
details <- isTRUE(resources[["details"]])
resources[["details"]] <- NULL

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]

16 batchtools_openlava

resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

As-is resource specifications
job_declarations <- resources[["asis"]]
resources[["asis"]] <- NULL

Remaining resources are assumed to be of type '-<key>=<value>'
opts <- unlist(resources, use.names = TRUE)
opts <- sprintf("-%s=%s", names(opts), opts)
job_declarations <- sprintf("#BSUB %s", c(job_declarations, opts))
writeLines(job_declarations)

%>

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

<% if (length(job_declarations) > 0) {
writeLines(c(
"echo 'Job submission declarations:'",
sprintf("echo '%s'", job_declarations),
"echo"

))
} %>

<% if (details) { %>
if command -v bjobs > /dev/null; then
echo "Job information:"
bjobs -l "${LSB_JOBID}"
echo

fi
<% } %>

<% if (length(startup) > 0) {
writeLines(startup)

} %>

<% if (length(modules) > 0) {
writeLines(c(
"echo 'Load environment modules:'",
sprintf("echo '- modules: %s'", paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),

batchtools_openlava 17

"module list"
))

} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."
echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"
echo "- job uri: '<%= uri %>'"
Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"
echo

<% if (details) { %>
if command -v bjobs > /dev/null; then
echo "Job summary:"
bjobs -l "${LSB_JOBID}"

fi
<% } %>

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

References

• https://en.wikipedia.org/wiki/OpenLava

Examples

library(future)

Limit runtime to 10 minutes and total memory to 400 MiB per future,

https://en.wikipedia.org/wiki/OpenLava

18 batchtools_sge

request a parallel environment with four slots on a single host.
Submit to the 'freecycle' queue. Load environment modules 'r' and
'jags'. Report on job details at startup and at the end of the job.
plan(future.batchtools::batchtools_openlava, resources = list(

W = "00:10:00", M = "400",
asis = c("-n 4", "-R 'span[hosts=1]'", "-q freecycle"),
modules = c("r", "jags"),
details = TRUE

))

f <- future({
data.frame(

hostname = Sys.info()[["nodename"]],
os = Sys.info()[["sysname"]],

cores = unname(parallelly::availableCores()),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_sge A batchtools SGE backend resolves futures in parallel via a Sun/Son
of/Oracle/Univa/Altair Grid Engine job scheduler

Description

A batchtools SGE backend resolves futures in parallel via a Sun/Son of/Oracle/Univa/Altair Grid
Engine job scheduler

Usage

batchtools_sge(
...,
template = "sge",
scheduler.latency = 1,
fs.latency = 65,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success"),
workers = getOption("future.batchtools.workers", default = 100L)

)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/sge.tmpl part of this package (see
below).

batchtools_sge 19

scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

workers The maximum number of workers the batchtools backend may use at any time,
which for HPC schedulers corresponds to the maximum number of queued jobs.
The default is getOption("future.batchtools.workers", 100).

... Not used.

Details

Batchtools SGE futures use batchtools cluster functions created by batchtools::makeClusterFunctionsSGE(),
which are used to interact with the SGE job scheduler. This requires that SGE commands qsub,
qstat, and qdel are available on the current machine.

The default template script templates/sge.tmpl can be found in:

system.file("templates", "sge.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template for SGE

20 batchtools_sge

#
Author: Henrik Bengtsson
##
Shell
#$ -S /bin/bash

Job name
#$ -N <%= job.name %>

Direct streams to logfile
#$ -o <%= log.file %>

Merge standard error and output
#$ -j y

Tell the queue system to use the current directory
as the working directory
#$ -cwd

Resources needed:
<%
Should scheduler "details" be seen?
details <- isTRUE(resources[["details"]])
resources[["details"]] <- NULL

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]
resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

As-is resource specifications
job_declarations <- resources[["asis"]]
resources[["asis"]] <- NULL

Remaining resources are assumed to be of type '-l <key>=<value>'
opts <- unlist(resources, use.names = TRUE)
opts <- sprintf("-l %s=%s", names(opts), opts)
job_declarations <- sprintf("#$ %s", c(job_declarations, opts))
writeLines(job_declarations)

%>

batchtools_sge 21

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

<% if (length(job_declarations) > 0) {
writeLines(c(
"echo 'Job submission declarations:'",
sprintf("echo '%s'", job_declarations),
"echo"

))
} %>

<% if (details) { %>
if command -v qstat > /dev/null; then
echo "Job information:"
qstat -j "${JOB_ID}"
echo

fi
<% } %>

<% if (length(startup) > 0) {
writeLines(startup)

} %>

<% if (length(modules) > 0) {
writeLines(c(
"echo 'Load environment modules:'",
sprintf("echo '- modules: %s'", paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),
"module list"

))
} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."
echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"

22 batchtools_sge

echo "- job uri: '<%= uri %>'"
Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"
echo

<% if (details) { %>
if command -v qstat > /dev/null; then
echo "Job summary:"
qstat -j "${JOB_ID}"

fi
<% } %>

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

This template and the built-in batchtools::makeClusterFunctionsSGE() have been verified to
work on a few different Grid Engine HPC clusters;

1. SGE 8.1.9 (Son of Grid Engine), Rocky 8 Linux, BeeGFS global filesystem (August 2025)

2. AGE 2024.1.0 (8.9.0), Rocky 9 Linux, NSF global filesystem (August 2025)

References

• https://en.wikipedia.org/wiki/Oracle_Grid_Engine

Examples

library(future)

Limit runtime to 10 minutes and memory to 400 MiB per future,
request a parallel environment with four slots on a single host.
Submit to the 'freecycle' queue. Load environment modules 'r' and
'jags'. Report on job details at startup and at the end of the job.
plan(future.batchtools::batchtools_sge, resources = list(

h_rt = "00:10:00", mem_free = "100M", ## memory is per process
asis = c("-pe smp 4", "-q freecycle.q"),
modules = c("r", "jags"),
details = TRUE

))

f <- future({
data.frame(

https://en.wikipedia.org/wiki/Oracle_Grid_Engine

batchtools_slurm 23

hostname = Sys.info()[["nodename"]],
os = Sys.info()[["sysname"]],

cores = unname(parallelly::availableCores()),
modules = Sys.getenv("LOADEDMODULES")

)
})
info <- value(f)
print(info)

batchtools_slurm A batchtools slurm backend resolves futures in parallel via a Slurm
job scheduler

Description

A batchtools slurm backend resolves futures in parallel via a Slurm job scheduler

Usage

batchtools_slurm(
...,
template = "slurm",
scheduler.latency = 1,
fs.latency = 65,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success"),
workers = getOption("future.batchtools.workers", default = 100L)

)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/slurm.tmpl part of this package (see
below).

scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

24 batchtools_slurm

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

workers The maximum number of workers the batchtools backend may use at any time,
which for HPC schedulers corresponds to the maximum number of queued jobs.
The default is getOption("future.batchtools.workers", 100).

... Not used.

Details

Batchtools slurm futures use batchtools cluster functions created by batchtools::makeClusterFunctionsSlurm(),
which are used to interact with the Slurm job scheduler. This requires that Slurm commands sbatch,
squeue, and scancel are available on the current machine.

The default template script templates/slurm.tmpl can be found in:

system.file("templates", "slurm.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template for Slurm
#
Author: Henrik Bengtsson
##

Job name
#SBATCH --job-name=<%= job.name %>
Direct streams to logfile
#SBATCH --output=<%= log.file %>

Resources needed:
<%
Shell "details" code to evaluate
details <- isTRUE(resources[["details"]])
resources[["details"]] <- NULL

batchtools_slurm 25

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]
resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

As-is resource specifications
job_declarations <- resources[["asis"]]
resources[["asis"]] <- NULL

Remaining resources are assumed to be of type '--<key>=<value>'
opts <- unlist(resources, use.names = TRUE)
opts <- sprintf("--%s=%s", names(opts), opts)
job_declarations <- sprintf("#SBATCH %s", c(job_declarations, opts))
writeLines(job_declarations)

%>

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

<% if (length(job_declarations) > 0) {
writeLines(c(
"echo 'Job submission declarations:'",
sprintf("echo '%s'", job_declarations),
"echo"

))
} %>

<% if (details) { %>
if command -v scontrol > /dev/null; then
echo "Job information:"
scontrol show job "${SLURM_JOB_ID}"
echo

fi
<% } %>

<% if (length(startup) > 0) {
writeLines(startup)

26 batchtools_slurm

} %>

<% if (length(modules) > 0) {
writeLines(c(
"echo 'Load environment modules:'",
sprintf("echo '- modules: %s'", paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),
"module list"

))
} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."
echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"
echo "- job uri: '<%= uri %>'"
Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"
echo

<% if (details) { %>
if command -v sstat > /dev/null; then
echo "Job summary:"
sstat --format="JobID,AveCPU,MaxRSS,MaxPages,MaxDiskRead,MaxDiskWrite" --allsteps --jobs="${SLURM_JOB_ID}"

fi
<% } %>

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

This template and the built-in batchtools::makeClusterFunctionsSlurm() have been verified
to work on a few different Slurm HPC clusters;

batchtools_torque 27

1. Slurm 21.08.4, Rocky 8 Linux, NFS global filesystem (August 2025)

2. Slurm 22.05.11, Rocky 8 Linux, NFS global filesystem (August 2025)

3. Slurm 23.02.6, Ubuntu 24.04 LTS, NFS global filesystem (August 2025)

References

• https://en.wikipedia.org/wiki/Slurm_Workload_Manager

Examples

library(future)

Limit runtime to 10 minutes and memory to 400 MiB per future,
request a parallel environment with four slots on a single host.
Submit to the 'freecycle' partition. Load environment modules 'r' and
'jags'. Report on job details at startup and at the end of the job.
plan(future.batchtools::batchtools_slurm, resources = list(

time = "00:10:00", mem = "400M",
asis = c("--nodes=1", "--ntasks=4", "--partition=freecycle"),
modules = c("r", "jags"),
details = TRUE

))

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores()),

modules = Sys.getenv("LOADEDMODULES")
)

})
info <- value(f)
print(info)

batchtools_torque A batchtools TORQUE backend resolves futures in parallel via a
TORQUE/PBS job scheduler

Description

A batchtools TORQUE backend resolves futures in parallel via a TORQUE/PBS job scheduler

Usage

batchtools_torque(
...,
template = "torque",
scheduler.latency = 1,

https://en.wikipedia.org/wiki/Slurm_Workload_Manager

28 batchtools_torque

fs.latency = 65,
resources = list(),
delete = getOption("future.batchtools.delete", "on-success"),
workers = getOption("future.batchtools.workers", default = 100L)

)

Arguments

template (optional) Name of job-script template to be searched for by batchtools::findTemplateFile().
If not found, it defaults to the templates/torque.tmpl part of this package (see
below).

scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to 0 to disable the heuristic, e.g. if you are working on a local file system.

resources (optional) A named list passed to the batchtools job-script template as variable
resources. This is based on how batchtools::submitJobs() works, with
the exception for specially reserved names defined by the future.batchtools
package;

• resources[["asis"]] is a character vector that are passed as-is to the job
script and are injected as job resource declarations.

• resources[["modules"]] is character vector of Linux environment mod-
ules to be loaded.

• resources[["startup"]] and resources[["shutdown"]] are character
vectors of shell code to be injected to the job script as-is.

• resources[["details"]], if TRUE, results in the job script outputting
job details and job summaries at the beginning and at the end.

• All remaining resources named elements are injected as named resource
specification for the scheduler.

delete Controls if and when the batchtools job registry folder is deleted. If "on-success"
(default), it is deleted if the future was resolved successfully and the expression
did not produce an error. If "never", then it is never deleted. If "always", then
it is always deleted.

workers The maximum number of workers the batchtools backend may use at any time,
which for HPC schedulers corresponds to the maximum number of queued jobs.
The default is getOption("future.batchtools.workers", 100).

... Not used.

Details

Batchtools TORQUE/PBS futures use batchtools cluster functions created by batchtools::makeClusterFunctionsTORQUE(),
which are used to interact with the TORQUE/PBS job scheduler. This requires that TORQUE/PBS
commands qsub, qselect, and qdel are available on the current machine.

batchtools_torque 29

The default template script templates/torque.tmpl can be found in:

system.file("templates", "torque.tmpl", package = "future.batchtools")

and comprise:

#!/bin/bash
##
A batchtools launch script template for TORQUE/PBS
#
Author: Henrik Bengtsson
##

Job name
#PBS -N <%= job.name %>

Direct streams to logfile
#PBS -o <%= log.file %>

Merge standard error and output
#PBS -j oe

Resources needed:
<%
Should scheduler "details" be seen?
details <- isTRUE(resources[["details"]])
resources[["details"]] <- NULL

Shell "startup" code to evaluate
startup <- resources[["startup"]]
resources[["startup"]] <- NULL

Shell "shutdown" code to evaluate
shutdown <- resources[["shutdown"]]
resources[["shutdown"]] <- NULL

Environment modules specifications
modules <- resources[["modules"]]
resources[["modules"]] <- NULL

As-is resource specifications
job_declarations <- resources[["asis"]]
resources[["asis"]] <- NULL

Remaining resources are assumed to be of type '-l <key>=<value>'
opts <- unlist(resources, use.names = TRUE)
opts <- sprintf("-l %s=%s", names(opts), opts)
job_declarations <- sprintf("#PBS %s", c(job_declarations, opts))

30 batchtools_torque

writeLines(job_declarations)
%>

Bash settings
set -e # exit on error
set -u # error on unset variables
set -o pipefail # fail a pipeline if any command fails
trap 'echo "ERROR: future.batchtools job script failed on line $LINENO" >&2; exit 1' ERR

<% if (length(job_declarations) > 0) {
writeLines(c(
"echo 'Job submission declarations:'",
sprintf("echo '%s'", job_declarations),
"echo"

))
} %>

<% if (details) { %>
if command -v qstat > /dev/null; then
echo "Job information:"
qstat -f "${PBS_JOBID}"
echo

fi
<% } %>

<% if (length(startup) > 0) {
writeLines(startup)

} %>

<% if (length(modules) > 0) {
writeLines(c(
"echo 'Load environment modules:'",
sprintf("echo '- modules: %s'", paste(modules, collapse = ", ")),
sprintf("module load %s", paste(modules, collapse = " ")),
"module list"

))
} %>

echo "Session information:"
echo "- timestamp: $(date +"%Y-%m-%d %H:%M:%S%z")"
echo "- hostname: $(hostname)"
echo "- Rscript path: $(which Rscript)"
echo "- Rscript version: $(Rscript --version)"
echo "- Rscript library paths: $(Rscript -e "cat(shQuote(.libPaths()), sep = ' ')")"
echo

Launch R and evaluate the batchtools R job
echo "Rscript -e 'batchtools::doJobCollection()' ..."

batchtools_torque 31

echo "- job name: '<%= job.name %>'"
echo "- job log file: '<%= log.file %>'"
echo "- job uri: '<%= uri %>'"
Rscript -e 'batchtools::doJobCollection("<%= uri %>")'
res=$?
echo " - exit code: ${res}"
echo "Rscript -e 'batchtools::doJobCollection()' ... done"
echo

<% if (details) { %>
if command -v qstat > /dev/null; then
echo "Job summary:"
qstat -f "${PBS_JOBID}"

fi
<% } %>

<% if (length(shutdown) > 0) {
writeLines(shutdown)

} %>

echo "End time: $(date +"%Y-%m-%d %H:%M:%S%z")"

Relay the exit code from Rscript
exit "${res}"

References

• https://en.wikipedia.org/wiki/TORQUE

Examples

library(future)

Limit runtime to 10 minutes and total memory to 400 MiB per future,
request a parallel environment with four slots on a single host.
Submit to the 'freecycle' queue. Load environment modules 'r' and
'jags'. Report on job details at startup and at the end of the job.
plan(future.batchtools::batchtools_torque, resources = list(

walltime = "00:10:00", mem = "100mb", ## memory is per process
asis = c("-l nodes=1:ppn=4", "-q freecycle"),
modules = c("r", "jags"),
details = TRUE

))

f <- future({
data.frame(
hostname = Sys.info()[["nodename"]],

os = Sys.info()[["sysname"]],
cores = unname(parallelly::availableCores())

)
})

https://en.wikipedia.org/wiki/TORQUE

32 future.batchtools

info <- value(f)
print(info)

future.batchtools future.batchtools: A Future for batchtools

Description

The future.batchtools package implements the Future API on top of batchtools such that futures
can be resolved on for instance high-performance compute (HPC) clusters via job schedulers. The
Future API is defined by the future package.

Details

To use batchtools futures, load future.batchtools, and select the type of future you wish to use via
future::plan().

Author(s)

Maintainer: Henrik Bengtsson <henrikb@braju.com> (ORCID) [copyright holder]

See Also

Useful links:

• https://future.batchtools.futureverse.org

• https://github.com/futureverse/future.batchtools

• Report bugs at https://github.com/futureverse/future.batchtools/issues

Examples

library(future)
plan(future.batchtools::batchtools_local)
demo("mandelbrot", package = "future", ask = FALSE)

https://orcid.org/0000-0002-7579-5165
https://future.batchtools.futureverse.org
https://github.com/futureverse/future.batchtools
https://github.com/futureverse/future.batchtools/issues

zzz-future.batchtools.options 33

zzz-future.batchtools.options

Options used for batchtools futures

Description

Below are the R options and environment variables that are used by the future.batchtools package.
See future::future.options for additional ones that apply to futures in general.

WARNING: Note that the names and the default values of these options may change in future ver-
sions of the package. Please use with care until further notice.

Settings for batchtools futures

‘future.batchtools.workers’: (a positive numeric or +Inf) The default number of workers
available on HPC schedulers with job queues. (Default: 100)

‘future.batchtools.output’: (logical) If TRUE, batchtools will produce extra output. If FALSE,
such output will be disabled by setting batchtools options ‘batchtools.verbose’ and ‘batchtools.progress’
to FALSE. (Default: getOption("future.debug", FALSE))

‘future.batchtools.expiration.tail’: (a positive numeric) When a batchtools job expires,
the last few lines will be relayed by batchtools futures to help troubleshooting. This option
controls how many lines are displayed. (Default: 48L)

‘future.cache.path’: (character string) An absolute or relative path specifying the root folder
in which batchtools registry folders are stored. This folder needs to be accessible from all
hosts ("workers"). Specifically, it must not be a folder that is only local to the machine such
as file.path(tempdir(), ".future" if an job scheduler on a HPC environment is used.
(Default: .future in the current working directory)

‘future.batchtools.delete’: (character string) Controls whether or not the future’s batchtools
registry folder is deleted after the future result has been collected. If "always", it is al-
ways deleted. If "never", it is never deleted. If "on-success", it is deleted if the future
resolved successfully, whereas if it failed, it is left as-is to help with troubleshooting. (De-
fault: "on-success")

Environment variables that set R options

All of the above R ‘future.batchtools.*’ options can be set by corresponding environment vari-
able R_FUTURE_BATCHTOOLS_* when the future.batchtools package is loaded. This means that
those environment variables must be set before the future.batchtools package is loaded in or-
der to have an effect. For example, if R_FUTURE_BATCHTOOLS_WORKERS="200" is set, then option
‘future.batchtools.workers’ is set to 200 (numeric).

Examples

Set an R option:
options(future.cache.path = "/cluster-wide/folder/.future")

Index

batchtools::findTemplateFile(), 2, 8, 14,
18, 23, 28

batchtools::makeClusterFunctionsInteractive(),
6, 7

batchtools::makeClusterFunctionsLSF(),
9

batchtools::makeClusterFunctionsMulticore(),
13

batchtools::makeClusterFunctionsOpenLava(),
15

batchtools::makeClusterFunctionsSGE(),
19, 22

batchtools::makeClusterFunctionsSlurm(),
24, 26

batchtools::makeClusterFunctionsTORQUE(),
28

batchtools::submitJobs(), 3, 9, 14, 19, 23,
28

batchtools_bash, 2
batchtools_interactive, 5
batchtools_local, 7
batchtools_lsf, 8
batchtools_multicore, 12
batchtools_openlava, 14
batchtools_sge, 18
batchtools_slurm, 23
batchtools_torque, 27

ClusterFunctions, 5

future.batchtools, 32
future.batchtools-package

(future.batchtools), 32
future.batchtools.delete

(zzz-future.batchtools.options),
33

future.batchtools.expiration.tail
(zzz-future.batchtools.options),
33

future.batchtools.options
(zzz-future.batchtools.options),
33

future.batchtools.output
(zzz-future.batchtools.options),
33

future.batchtools.workers, 9, 15, 19, 24,
28

future.batchtools.workers
(zzz-future.batchtools.options),
33

future::future.options, 33
future::plan(), 32

makeClusterFunctionsBash
(batchtools_bash), 2

makeClusterFunctionsBash(), 3

R_FUTURE_BATCHTOOLS_DELETE
(zzz-future.batchtools.options),
33

R_FUTURE_BATCHTOOLS_EXPIRATION_TAIL
(zzz-future.batchtools.options),
33

R_FUTURE_BATCHTOOLS_OUTPUT
(zzz-future.batchtools.options),
33

R_FUTURE_BATCHTOOLS_WORKERS
(zzz-future.batchtools.options),
33

R_FUTURE_CACHE_PATH
(zzz-future.batchtools.options),
33

submitJobs, 8, 14, 19, 23, 28

zzz-future.batchtools.options, 33

34

	batchtools_bash
	batchtools_interactive
	batchtools_local
	batchtools_lsf
	batchtools_multicore
	batchtools_openlava
	batchtools_sge
	batchtools_slurm
	batchtools_torque
	future.batchtools
	zzz-future.batchtools.options
	Index

