Package 'grafify' August 25, 2025 ``` Title Easy Graphs for Data Visualisation and Linear Models for ANOVA Date 2025-08-23 Version 5.1.0 Description Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrap- pers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distri- butions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for ex- ample, by choosing from colour blind-friendly palettes (12 discreet, 3 continuous and 2 diver- gent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear mod- els (lmer()), including randomised-block or repeated-measures designs, and fit non-linear out- comes as a generalised additive model (gam) using mgcv(). Obtain esti- mated marginal means and perform post-hoc comparisons on fitted models (via em- means()). Also includes small datasets for practising code and teaching basics be- fore users move on to more complex designs. See vignettes for details on us- age https://grafify.shenoylab.com/. Citation: doi:10.5281/zenodo.5136508. License GPL (>= 2) Imports car, dplyr, emmeans, Hmisc, lme4, lmerTest, magrittr, mgcv, patchwork, purrr, stats, tidyr Depends R (>= 4.0), ggplot2 (>= 3.4.0) Encoding UTF-8 LazyData true ``` **Suggests** knitr, Matrix (>= 1.6-5), rlang, rmarkdown, pbkrtest, <https://orcid.org/0000-0001-6228-9303>) URL https://github.com/ashenoy-cmbi/grafify **Author** Avinash R Shenoy [cre, aut] (ORCID: Type Package Language en-GB RoxygenNote 7.3.2 testthat (>= 3.0.0) Config/testthat/edition 3 NeedsCompilation no 2 Contents Maintainer Avinash R Shenoy <a.shenoy@imperial.ac.uk> Repository CRAN Date/Publication 2025-08-25 12:10:02 UTC # **Contents** | data_Iw_death | 3 | |---|----| | data_2w_Festing | 4 | | data_2w_Tdeath | 4 | | data_cholesterol | 5 | | data_doubling_time | 6 | | data_t_pdiff | 6 | | data_t_pratio | 7 | | data_zooplankton | 7 | | ga_anova | 8 | | ga_model | 9 | | 6 · - 6 · · - · · · · · · · · · · · · · · · · · · · | 0 | | graf_colours | 1 | | c = -1 | 12 | | graf_col_palette_default | 2 | | | 13 | | make_1way_data | 4 | | | 15 | | | 6 | | make_2way_rb_data | 8 | | | 9 | | mixed_anova_slopes | 21 | | mixed_model | 23 | | mixed_model_slopes | 25 | | | 27 | | plot_3d_scatterbar | 30 | | plot_3d_scatterbox | 33 | | plot_3d_scatterviolin | 36 | | plot_4d_point_sd | 39 | | | 12 | | | 15 | | plot_4d_scatterviolin | 18 | | plot_befafter_box | 51 | | plot_befafter_colours | 54 | | plot_befafter_shapes | 57 | | | 50 | | | 52 | | -
plot_dotbox | 55 | | plot_dotviolin | 57 | | plot_gam_predict | | | plot_grafify_palette | | | | 72 | data_1w_death 3 | data <u>.</u> | _1w_death | In vitro exp | measui | ring perc | rentage cell | death in th | ree geno- | |---------------|----------------------------|--------------|--------|-----------|--------------|-------------|-----------| | Index | | | | | | | 120 | | | meme_gramy | |
 | | | | 110 | | | theme_grafify | | | | | | | | | table_x_reorder | | | | | | | | | simple_model table_summary | | | | | | | | | simple_anova | | | | | | | | | scale_fill_grafify . | | | | | | | | | scale_colour_grafify | | | | | | | | | posthoc_vsRef | | | | | | | | | posthoc_Trends_vsR | | | | | | | | | posthoc_Trends_Pair | | | | | | | | | posthoc_Trends_Lev | | | | | | | | | posthoc_Pairwise . | | | | | | | | | posthoc_Levelwise | | | | | | | | | plot_xy_NumGroup | | | | | | | | | plot_xy_Group | | | | | | | | | plot_xy_CatGroup | |
 | | | | 92 | | | plot_scatterviolin . | |
 | | | | 89 | | | plot_scatterbox | |
 | | | | 86 | | | plot_scatterbar_sd . | | | | | | | | | plot_qq_gam | | | | | | | | | plot_qqmodel | | | | | | | | | plot_qqline | | | | | | | | | plot_point_sd | | | | | | | | | plot_logscale | | | | | | | | | plot_lm_predict | |
 | | | | 74 | # Description These data are from in vitro measurements of death of host cells (measured as percentage of total cells) after infection with three different strains of a pathogenic bacterium, from five independent experiments. The three strains are three levels within the fixed factor Genotype. The five independent experiments are levels within the random variable Experiment. These data can be analysed using linear mixed effects modelling. These data are from Goddard *et al*, Cell Rep, 2019 (doi:10.1016/j.celrep.2019.03.100). ## Usage data_1w_death 4 data_2w_Tdeath #### **Format** data.frame: 15 obs. of 3 variables. Experiment - a random factor with 5 levels "Exp_1", "Exp_2"... **Genotype** Genotypes - a fixed factor with 3 levels: "WT", "KO_1", "KO_2". **Death** Numerical dependent variable indicating percentage cell death. data_2w_Festing Data from two-way ANOVA with randomised block design of treatments of strains of mice. #### **Description** Data from Festing, ILAR Journal (2014) 55, 472–476 (doi:10.1093/ilar/ilu045). These data are suitable for two-way linear mixed effects modelling. The activity of GST (numerical dependent variable) was measured in 4 strains of mice (levels with the fixed factor Strain) either treated or controls (levels within the fixed factor Treatment). Once mouse each was used in two randomised blocks, which is the random factor (Block). #### Usage data_2w_Festing #### Format data.frame: 16 obs. of 4 variables: **Block** A random factor with 2 levels "A" and "B". Treatment A fixed factor with 2 levels: "Control" & "Treated" Strain A fixed factor with 4 levels: "129Ola", "A/J", "NIH" & "BALB/C" GST Numerical dependent variable indicating GST activity measurement data_2w_Tdeath In vitro measurement of percentage cell death - two-way ANOVA design with repeated measures, and randomised blocks. #### **Description** These are measurements of death of infected host cells (as percentage of total cells) upon infection with two strains of bacteria, measured at two time points, in 6 independent experiments. These data repeated-measures data suitable for two-way linear mixed effects modelling with experiment and subjects as random factors. data_cholesterol 5 #### Usage data_2w_Tdeath #### **Format** data.frame: 24 obs. of 6 variables: Experiment A random factor with 6 levels "e1", "e2"... Time A fixed factor with 2 levels: "t100" & "t300". **Time2** A numeric column that allows plotting data on a quantitative "Time" axis. The "Time" column has "factor" type values that should be used for the ANOVA.. **Genotype** A fixed factor with 2 levels that we want to compare "WT" & "KO". **Subject** A random factor with 12 levels: "s1", "s2"... These are cell culture wells that were measured at two time points, and indicate "subjects" that underwent repeated-measures within each of 6 experiments. Subject IDs for WT and KO are unique and clearly indicate different wells. **PI** Numerical dependent variable indicating propidium iodide dye uptake as a measure of cell death. These are percentage of dead cells out of total cells plated. data_cholesterol Hierarchical data from 25 subjects either treated or not at 5 hospitals - two-way ANOVA design with repeated measures. ## **Description** An example dataset on measurements of blood cholesterol levels measured in 5 subjects measured before and after receiving a Drug. Five patients each were recruited at 5 hospitals (a-e), so that there are 25 different subjects (1-25) measured twice. Data are from Micro/Immuno Stats #### Usage data_cholesterol #### Format tibble: 30 obs. of 3 variables: Hospital Factor with 5 levels (a-e), representing different hospitals where subjects were recruited. Subject A factor with 25 levels denoting individuals on whom measurements were made twice. **Treatment** A factor with 2 levels indicating when measurements were made, i.e. before and after drug. **Cholesterol** Numerical dependent variable indicating measured doubling time in min. 6 data_t_pdiff | data_doubling_time Doubling time of E.coli measured by 10 students three indep times. | endent | |---|--------| |---|--------| #### Description An example dataset showing measurements of *E. coli* doubling times (in min) measured by 10 different students in 3 independent experiments each. Note that Experiments are just called Exp1-Exp3 even though Exp1 of any of the students are not connected in anyway - this will confuse R! Data are from Micro/Immuno Stats ## Usage ``` data_doubling_time ``` #### **Format** tibble: 30 obs. of 3 variables: **Student** Factor with 10 levels, representing different students. **Experiment** A factor with 3 levels representing independent experiments. **Doubling_time** Numerical dependent variable indicating measured doubling time in min. | data_t_pdiff | Matched data from two groups where difference between them is consistent. | |--------------|---| | | | ## **Description** An example dataset for paired difference Student's t test. These are bodyweight (Mass) in grams of same mice left untreated or treated, which are two groups to be compared. The data are in a longtable format, and the two groups are levels within the factor "Condition". The Subject column lists ID of matched mice that were measured without and with treatment. These data are from Sanchez-Garrido $et\ al$, Sci Signal, 2018 (doi:10.1126/scisignal.aat6903). ## Usage ``` data_t_pdiff ``` #### **Format** data.frame: 20 obs. of 3 variables: Subject Factor with 10 levels, denoted by capital letters, representing individuals or subjects. **Condition** A fixed factor with 2 levels: "Untreated" & "Treated". Mass Numerical dependent variable indicating body mass of mice data_t_pratio 7 data_t_pratio
Matched data from two groups where ratio between them is consistent. #### Description An example dataset for paired ratio Student's *t* test. These are Cytokine measurements by ELISA (in ng/ml) from 33 independent in vitro experiments performed on two Genotypes that we want to compare. The data are in a longtable format, and the two groups are levels within the factor "Genotype". The Experiment column lists ID of matched experiments. # Usage data_t_pratio #### **Format** data.frame: 66 obs. of 3 variables: **Genotype** Factor with 2 levels, representing genotypes to be compared ("WT" & "KO"). **Experiment** A random factor with 33 levels representing independent experiments, denoted as "Exp_1", "Exp_2"... **Cytokine** Numerical dependent variable indicating cytokine measured by ELISA. data_zooplankton Time-series data on zooplankton in lake Menon. #### **Description** A subset of data from (Lathro RC, 2000) (doi:10.6073/pasta/ec3d0186753985147d4f283252388e05) provided by the Wisconsin Department of Natural Resources # Usage data_zooplankton #### **Format** tibble: 1127 obs. of 8 variables: day Numeric integer variable. year Numeric integer variable of years during which data were collected. lake This data is for lake Menon; data for other others not included in this subset. taxon Names of zooplankton taxa as factor of 8 levels. density Numeric values of density of measurements. 8 ga_anova ``` density_adj Numeric values of adjusted density .min_density Numeric values of minimum densities.desnsity_scaled Numeric value of scaled density. ``` ga_anova ANOVA table from a generalised additive model (gam) # Description One of two functions for fitting generalised additive models (gam) with the mgcv package. It will use the gam() function in mgcv for ANOVA designs with up to two categorical fixed factors (with two or more levels; Fixed_Factor), and exactly one factor is a continuous variable (e.g. time), which is called Smooth_Factor. ``` ga_model ga_anova ``` # Usage ``` ga_anova(data, Y_value, Fixed_Factor, Smooth_Factor, Random_Factor = NULL, Nodes = NULL, ...) ``` # Arguments | data | a data frame where categorical independent variables are converted to factors using as.factor() first. The function will throw errors without this. | |---------------|--| | Y_value | name of column containing quantitative (dependent) variable, provided within "quotes". | | Fixed_Factor | name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., $c("A", "B")$). Convert to factors first with as factor. | | Smooth_Factor | the continuous variable to fit smoothly with a basis function, provided within "quotes" (only 1 Smooth_Factor allowed). | | Random_Factor | name(s) of random factors to be provided in "quotes" (only 1 Random_Factor allowed). Convert to factor with as . factor first. | | Nodes | number of nodes (the parameter k in gam). | | | any additional variables to pass on to gam or anova | ga_model 9 #### **Details** A smooth function is fitted with factor-wise smooth basis function (by =). A default value for number of nodes (the argument k in gam) may work, but a specific number can be provided using the Nodes argument. The model is fit using the REML method. When two categorical fixed factors are provided, an interaction term is included for main effects and smooth basis functions. If a Random_Factor is also provided, it is fitted using bs = "re" smooth. #### Value ANOVA table of class "anova" and "data.frame". #### **Examples** ``` #with zooplankton data ga_anova(data = data_zooplankton, Y_value = "log(density_adj)", Fixed_Factor = "taxon", Smooth_Factor = "day") ``` ga_model Fit a generalised additive model (gam) #### **Description** One of two functions for fitting generalised additive models (gam) with the mgcv package. It will use the gam() function in mgcv for ANOVA designs with up to two categorical fixed factors (with two or more levels; Fixed_Factor), and exactly one factor is a continuous variable (e.g. time), which is called Smooth_Factor. ``` ga_model ga_anova ``` A smooth function is fitted with factor-wise smooth basis function (by =). A default value for number of nodes (the argument k in gam) may work, but a specific number can be provided using the Nodes argument. The model is fit using the REML method. When two categorical fixed factors are provided, an interaction term is included for main effects and smooth basis functions. ## Usage ``` ga_model(data, Y_value, Fixed_Factor, Smooth_Factor, Random_Factor = NULL, ``` 10 get_graf_colours ``` Nodes = "NULL", ...) ``` #### **Arguments** data a data frame where categorical independent variables are converted to factors using as.factor() first. The function will throw errors without this. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). Convert to factors first with as.factor. Smooth_Factor the continuous variable to fit smoothly with a basis function, provided within "quotes" (only 1 Smooth_Factor allowed). Random_Factor name(s) of random factors to be provided in "quotes" (only 1 Random_Factor allowed). Convert to factor with as.factor first. Nodes number of nodes (the parameter k in gam). ... any additional variables to pass on to gam or anova #### **Details** If a Random_Factor is also provided, it is fitted using bs = "re" smooth. #### Value This function gives a generalised additive model object of class "gam", "lm" and "glm". #### **Examples** ``` #fit a model with zooplankton data z1 <- ga_model(data = data_zooplankton, Y_value = "log(density_adj)", Fixed_Factor = "taxon", Smooth_Factor = "day")</pre> ``` get_graf_colours Get graf internal #### **Description** Function to make grafify colour scheme. Thank you Dr Simon. #### Usage ``` get_graf_colours(...) ``` graf_colours 11 #### **Arguments** ... internal #### **Details** To visualise grafify colours use plot_grafify_palette. #### Value This function returns names and hexcodes of colours in grafify as a character vector. graf_colours List of hexcodes of colours in grafify palettes # Description To visualise these colours use plot_grafify_palette. okabe_ito, bright, contrast, dark, light, muted, pale, vibrant, yello_conti from Paul Tol's colours (also see khroma package). Zesty, Pastel, Elegant from this link. Colour hexcodes for fishy, kelly, r4, safe, OrBl_div, PrGn_div, blue_conti, grey_conti taken from cols4all:c4a_gui package. All schemes are colour blind-friendly. #### Usage graf_colours ## **Format** An object of class character of length 154. ## Value This is a character vector with names and hexcodes of colours used by palette functions. It is used by get_graf_colours to generate palettes. graf_col_palette Call grafify palettes for scale & fill functions ## **Description** graf_col_palette and graf_col_palette_default functions generate colours for grafify scale functions. graf_col_palette picks sequential colours when the number of discrete colours needed is less than that in the palette. This is the default for grafify with ColoSeq = TRUE. If the number of colours required is more than that in the discrete palette, it fills intervening colours using the colorRampPalette[grDevices] function. ## Usage ``` graf_col_palette(palette = "okabe_ito", reverse = FALSE, ...) ``` ## Arguments palette internal reverse internal ... additional parameters #### **Details** graf_col_palette_default picks the most distant colours within the palette, rather than in the sequence they are in the palette, when the number of colours required is less than that in the palette. Colour order can be reversed in both functions. When only one colour discreet is required, and you want to reverse the colour palette, ColSeq should be set to FALSE. #### Value This generates required number of sequential colours from the chosen grafify palette when called by scale functions of ggplot2. ``` graf_col_palette_default ``` Call grafify palettes for scale & fill functions # Description graf_col_palette and graf_col_palette_default functions generate colours for grafify scale functions. graf_col_palette picks sequential colours when the number of discrete colours needed is less than that in the palette. This is the default for grafify with ColoSeq = TRUE. If the number of colours required is more than that in the discrete palette, it fills intervening colours using the colorRampPalette[grDevices] function. graf_palettes 13 #### Usage ``` graf_col_palette_default(palette = "okabe_ito", reverse = FALSE, ...) ``` #### **Arguments** palette internal reverse internal ... additional parameters #### **Details** graf_col_palette_default picks the most distant colours within the palette, rather than in the sequence they are in the palette, when the number of colours required is less than that in the palette. Colour order can be reversed in both functions. When only one colour discreet is required, and you want to reverse the colour palette, ColSeq should be set to FALSE. #### Value This generates required number of distant colours from the chosen grafify palette when called by scale functions of ggplot2. graf_palettes List of palettes available in grafify package # Description To visualise these colours use plot_grafify_palette. ## Usage ``` graf_palettes ``` ## **Format** An object of class list of length 18. #### Value This function returns a list of palettes in grafify with names and hexcodes of colours in those palettes. Names of palettes available are as follows: Categorical/discreet palettes: - okabe_ito - bright - contrast 14 make_1way_data - dark - kelly - light -
muted - pale - r4 - safe - vibrant ## Sequential quantitative palettes: - grey_conti - blue_conti - yellow_conti # Divergent quantitative palettes: - OrBl_div - PrGn_div make_1way_data Make one-way or two-way independent group or randomised block design data. # Description The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs. #### Usage ``` make_1way_data(Group_means, Num_obs, Residual_SD) ``` # Arguments Group_means a vector with means of each level of the first fixed factor (FixFac_X1) measured within Group 1. Num_obs a single numeric value indicating the number of independent measurements, i.e. levels within the random factor Experiment. Residual_SD a single numeric value indicating residual SD in the model. make_1way_rb_data 15 #### **Details** Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs. Num_exp sets the number of independent measurements per group. For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups. The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column. # Value This function produces a data. frame object containing simulated data. ## **Examples** ``` #Basic usage with three levels within Factor_X, #20 observations in each group, with residual SD 15 one_independent_tab <- make_1way_data(c(350, 250, 100), 15, 20) str(one_independent_tab) head(one_independent_tab)</pre> ``` make_1way_rb_data Make one-way or two-way independent group or randomised block design data. ## **Description** The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs. #### Usage ``` make_1way_rb_data(Group_means, Num_exp, Exp_SD, Residual_SD) ``` 16 make_2way_data ## Arguments | Group_means | a vector with means of each level of the first fixed factor (FixFac_X1) measured within Group 1. | |-------------|--| | Num_exp | a single numeric value. indicating the number of independent measurements, i.e. levels within the random factor RandFac. | | Exp_SD | a single numeric value indicating the standard deviation (SD) between experiments, i.e. within RandFac. | | Residual_SD | a single numeric value indicating residual SD in the model. | #### **Details** Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs. Num_exp sets the number of independent measurements per group. For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups. The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column. #### Value This function produces a data. frame object containing simulated data. ## **Examples** ``` #Basic usage with two levels within FactorX2, #20 experiments with inter-experiment SD 20, and residual SD 15 two_rb_tab <- make_2way_rb_data(c(100, 20), c(200, 300), 20, 20, 15) str(two_rb_tab) head(two_rb_tab) make_2way_data Make one-way or two-way independent group or randomised block design data. ``` #### **Description** The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs. make_2way_data 17 ## Usage ``` make_2way_data(Group_1_means, Group_2_means, Num_obs, Residual_SD) ``` ## **Arguments** Group_1_means a vector with means of each level of the first fixed factor (FixFac_X1) measured within Group 1. Group_2_means only for make_2way_data and make_2way_rb_data: a vector with mean(s) of each level of FactorX2 measured within Group 2. Num_obs a single numeric value indicating the number of independent measurements, i.e. levels within the random factor Experiment. Residual_SD a single numeric value indicating residual SD in the model. #### **Details** Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs. Num_obs sets the number of independent measurements per group. For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups. The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column. #### Value This function produces a data. frame object containing simulated data. #### **Examples** ``` #Basic usage with two levels within FactorX2, 20 observations in each group, with residual SD 15 two_independent_tab <- make_2way_data(c(100, 20), c(200, 300), 20, 15) #Four levels with 5 observations and residual SD 5 two_independent_tab <- make_2way_data(c(100, 20, 1500, 20), c(150, 5, 1450, 25), 5, 5) ``` 18 make_2way_rb_data | make_2way_rb_data | Make one-way or two-way independent group or randomised block design data. | |-------------------|--| | | | #### **Description** The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs. #### Usage ``` make_2way_rb_data(Group1_means, Group2_means, Num_exp, Exp_SD, Residual_SD) ``` ## **Arguments** | Group1_means | a vector with means of each level of the first fixed factor ($FixFac_X1$) measured within Group 1. | |--------------|---| | Group2_means | only for $make_2way_data$ and $make_2way_rb_data$: a vector with $mean(s)$ of each level of $Factor X2$ measured within Group 2. | | Num_exp | a single numeric value indicating the number of independent measurements, i.e. levels within the random factor RandFac. | | Exp_SD | a single numeric value indicating the standard deviation (SD) between experiment, i.e. within RandFac. | | Residual_SD | a single numeric value indicating residual SD in the model. | ## **Details** Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor (RandFac) for rb designs. Num_exp sets the number of independent measurements per group. For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups. The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column. #### Value This function produces a data. frame object containing simulated data. mixed_anova 19 ## **Examples** ``` #Basic usage with two levels within FactorX2, #20 experiments with inter-experiment SD 20, and residual SD 15 two_rb_tab <- make_2way_rb_data(c(100, 20), c(200, 300), 20, 20, 15) str(two_rb_tab) head(two_rb_tab)</pre> ``` mixed_anova ANOVA table from linear mixed effects analysis. ## Description One of four related functions for mixed effects analyses (based on lmer and as_lmerModLmerTest) to get a linear model for downstream steps, or an ANOVA table. - mixed_model - 2. mixed_anova - 3. mixed_model_slopes - 4. mixed_anova_slopes. ## Usage ``` mixed_anova(data, Y_value, Fixed_Factor,
Random_Factor, Df_method = "Kenward-Roger", SS_method = "II", AvgRF = TRUE, Formula = NULL, ...) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". The following transformations are permitted: " $\log(Y_value)$ ", " $\log(Y_value)$ " by where c a positive number, " $\log(Y_value)$ " or " $\log(Y_value)$ " or " $\log(Y_value)$ " which may be useful when Y_value are percentages (note quotes outside the log or logit calls); " $\operatorname{sqrt}(Y_value)$ " or " $(Y_value)^2$ " should also work. During posthocomparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., " $\operatorname{sqrt}(Y_value)$ " will not be back-transformed. Check out the regrid and ref_grid for details if you need back-transformation to the response scale. 20 mixed_anova Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B")). If a nu- meric variable is used, transformations similar to Y_value are permitted. Random_Factor name(s) of random factors to allow random intercepts; to be provided within quotes (e.g., "R") or as a vector when more than one (e.g., c("R1", "R2")). Df_method method for calculating degrees of freedom. Default is Kenward-Roger, can be changed to "Satterthwaite". SS_method type of sum of square, default is type II, can be changed to "I", "III", "1" or "2", or others. AvgRF this is a new argument since v5.0.0. The default AvgRF = TRUE will use the mean of Y_value (the response variable) grouped by levels of the Fixed_Factor and Random_Factor (using table_summary). This ensures that replicates within Random_Factor (or any other unused variable) are averaged (e.g., technical replicates nested within experimental blocks) before fitting a linear model and the denominator Df values are sensible. The name of the data frame in the model object will have (AvgRF) appended to it to indicate the averaging within levels of the Random_Factor. Using AvgRF = FALSE will lead to behaviour like versions < 5.0.0. Formula directly provide an a formula (within quotes) as you would if you were using lmer. If Y_value, Fixed_Factor and Random_Factor are provided, they will be ignored. This is basically a wrapper, which may be useful if fitting more complex random factor structures. ... any additional arguments to pass on to lmer if required. #### **Details** These functions require a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. Since v5.0.0, if AvgRF = TRUE, the response variable is averaged over levels of the fixed and random factors (to collapse replicate observations) and reduce the number of denominator degrees of freedom. If you do not want to do this, set AvgRF = FALSE. Outputs of mixed_model and mixed_model_slopes can be used for post-hoc comparisons with posthoc_Pairwise, posthoc_Levelwise, posthoc_vsRef, posthoc_Trends_Pairwise, posthoc_Trends_Levelwise and posthoc_Trends_vsRefor with emmeans. More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1|R) (which is equivalent to Y ~ A + B + A:B + (1|R)). In mixed_model_slopes and mixed_anova_slopes, the following kind of formula is used: $Y \sim A*B + (S|R)$ (which is equivalent to $Y \sim A + B + A:B + (S|R)$). In this experimental implementation, random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for Slopes_Factor and Random_Factor. #### Value ANOVA table of class "anova" and "data.frame". mixed_anova_slopes 21 ## **Examples** ``` #Usage with one fixed (Student) and random factor (Experiment) mixed_anova(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student", Random_Factor = "Experiment") #with formula mixed_anova(data = data_doubling_time, Formula = "Doubling_time ~ Student +(1|Experiment)") ``` mixed_anova_slopes ANOVA table from linear mixed effects analysis. ## **Description** One of four related functions for mixed effects analyses (based on lmer and as_lmerModLmerTest) to get a linear model for downstream steps, or an ANOVA table. - mixed_model - 2. mixed_anova - 3. mixed_model_slopes - 4. mixed_anova_slopes. ## Usage ``` mixed_anova_slopes(data, Y_value, Fixed_Factor, Slopes_Factor, Random_Factor, Df_method = "Kenward-Roger", SS_method = "II", AvgRF = TRUE, ...) ``` ## Arguments data a data table object, e.g. data.frame or tibble. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". The following transformations are permitted: "log(Y_value)", "log(Y_value + c)" where c a positive number, "logit(Y_value)" or "logit(Y_value/100)" which may be useful when Y_value are percentages (note quotes outside the log or 22 mixed_anova_slopes logit calls); "sqrt(Y_value)" or "(Y_value)^2" should also work. During posthoc-comparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., "sqrt(Y_value)" will not be back-transformed. Check out the regrid and ref_grid for details if you need back-transformation to the response scale. Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). If a nu- meric variable is used, transformations similar to Y_value are permitted. Slopes_Factor name of factor to allow varying slopes on. Only one variable is allowed. Random_Factor name(s) of random factors to allow random intercepts; to be provided within quotes (e.g., "R") or as a vector when more than one (e.g., c("R1", "R2")). Only one variable is allowed. Df_method method for calculating degrees of freedom. Default is Kenward-Roger, can be changed to "Satterthwaite". SS_method type of sum of square, default is type II, can be changed to "I", "III", "1" or "2", or others. AvgRF this is a new argument since v5.0.0. The default AvgRF = TRUE will use the mean of Y_value (the response variable) grouped by levels of the Fixed_Factor and Random_Factor (using table_summary). This ensures that replicates within Random_Factor (or any other unused variable) are averaged (e.g., technical replicates nested within experimental blocks) before fitting a linear model and the denominator Df values are sensible. The name of the data frame in the model object will have (AvgRF) appended to it to indicate the averaging within levels of the Random_Factor. Using AvgRF = FALSE will lead to behaviour like versions < 5.0.0. ... any additional arguments to pass on to lmer if required. #### **Details** These functions require a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. Since v5.0.0, if AvgRF = TRUE, the response variable is averaged over levels of the fixed and random factors (to collapse replicate observations) and reduce the number of denominator degrees of freedom. If you do not want to do this, set AvgRF = FALSE. If you do not want to do this, set AvgRF = FALSE. For more advanced models with slopes and intercept, use mixed_model or mixed_anova using the Formula argument. Outputs of mixed_model and mixed_model_slopes can be used for post-hoc comparisons with posthoc_Pairwise, posthoc_Levelwise, posthoc_vsRef, posthoc_Trends_Pairwise, posthoc_Trends_Levelwise and posthoc_Trends_vsRefor with emmeans. More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1|R) (which is equivalent to Y ~ A + B + A:B + (1|R)). In mixed_model_slopes and mixed_anova_slopes, the following kind of formula is used: $Y \sim A*B + (S|R)$ (which is equivalent to $Y \sim A + B + A:B + (S|R)$). In this experimental implementation, mixed_model 23 random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for Slopes_Factor and Random_Factor. #### Value ANOVA table of class "anova" and "data.frame". ## **Examples** ``` mixed_anova_slopes(data = data_2w_Tdeath, Y_value = "PI", Fixed_Factor = c("Genotype", "Time"), Slopes_Factor = "Time", Random_Factor = "Experiment") ``` mixed_model Model from a linear mixed effects model # **Description** One of four related functions for mixed effects analyses (based on lmer and as_lmerModLmerTest) to get a linear model for downstream steps, or an ANOVA table. ``` mixed_model ``` - 2. mixed_anova - 3. mixed_model_slopes - 4. mixed_anova_slopes. # Usage ``` mixed_model(data, Y_value, Fixed_Factor, Random_Factor, AvgRF = TRUE, Formula = NULL, ...) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. 24 mixed_model Y_value name of column containing quantitative (dependent) variable, provided within > "quotes". The following transformations are permitted: "log(Y_value)", "log(Y_value +c)" where c a positive number, "logit(Y value)" or "logit(Y value/100)" which may be useful when Y_value are percentages (note quotes outside the log or logit calls); "sqrt(Y_value)" or "(Y_value)^2" should also work. During posthoccomparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., "sqrt(Y_value)" will not be back-transformed. Check out the regrid and ref_grid for details if you need
back-transformation to the response scale. Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within > quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). If a numeric variable is used, transformations similar to Y_value are permitted. Random_Factor name(s) of random factors to allow random intercepts; to be provided within quotes (e.g., "R") or as a vector when more than one (e.g., c("R1", "R2")). this is a new argument since v5.0.0. The default AvgRF = TRUE will use the mean AvgRF > of Y_value (the response variable) grouped by levels of the Fixed_Factor and Random_Factor (using table_summary). This ensures that replicates within Random_Factor (or any other unused variable) are averaged (e.g., technical replicates nested within experimental blocks) before fitting a linear model and the denominator Df values are sensible. The name of the data frame in the model object will have (AvgRF) appended to it to indicate the averaging within levels of the Random_Factor. Using AvgRF = FALSE will lead to behaviour like versions < 5.0.0. Formula directly provide an a formula (within quotes) as you would if you were using > lmer. If Y_value, Fixed_Factor and Random_Factor are provided, they will be ignored. This is basically a wrapper, which may be useful if fitting more complex random factor structures. any additional arguments to pass on to lmer if required. #### **Details** These functions require a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. Since v5.0.0, if AvgRF = TRUE, the response variable is averaged over levels of the fixed and random factors (to collapse replicate observations) and reduce the number of denominator degrees of freedom. If you do not want to do this, set AvgRF = FALSE. Outputs of mixed_model and mixed_model_slopes can be used for post-hoc comparisons with posthoc_Pairwise, posthoc_Levelwise, posthoc_vsRef, posthoc_Trends_Pairwise, posthoc_Trends_Levelwise and posthoc_Trends_vsRefor with emmeans. More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1 | R) (which is equivalent to Y ~ A + B + A : B + (1|R). In mixed_model_slopes and mixed_anova_slopes, the following kind of formula is used: Y~ A*B + (S|R) (which is equivalent to $Y \sim A + B + A:B + (S|R)$). In this experimental implementation, mixed_model_slopes 25 random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for Slopes_Factor and Random_Factor. #### Value This function returns an S4 object of class "ImerModLmerTest". #### **Examples** ``` #one fixed factor and random factor mixed_model(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student", Random_Factor = "Experiment") #with formula mixed_anova(data = data_doubling_time, Formula = "Doubling_time ~ Student +(1|Experiment)") #' #save model model <- mixed_model(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student", Random_Factor = "Experiment") #get model summary summary(model)</pre> ``` mixed_model_slopes Model from a linear mixed effects model with varying slopes # Description One of four related functions for mixed effects analyses (based on lmer and as_lmerModLmerTest) to get a linear model for downstream steps, or an ANOVA table. - mixed_model - 2. mixed_anova - 3. mixed_model_slopes - 4. mixed_anova_slopes. # Usage ``` mixed_model_slopes(data, Y_value, Fixed_Factor, Slopes_Factor, ``` ``` Random_Factor, AvgRF = TRUE, ...) ``` ## **Arguments** data a data table object, e.g. data.frame or tibble. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". The following transformations are permitted: "log(Y_value)", "log(Y_value + c)" where c a positive number, "logit(Y_value)" or "logit(Y_value/100)" which may be useful when Y_value are percentages (note quotes outside the log or logit calls); "sqrt(Y_value)" or "(Y_value)^2" should also work. During posthocomparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., "sqrt(Y_value)" will not be back-transformed. Check out the regrid and ref_grid for details if you need back-transformation to the response scale. Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). If a nu- meric variable is used, transformations similar to Y_value are permitted. Slopes_Factor name of factor to allow varying slopes on. One one variable is allowed. Random_Factor name(s) of random factors to allow random intercepts; to be provided within quotes (e.g., "R") or as a vector when more than one (e.g., c("R1", "R2")). Only one variable is allowed. AvgRF this is a new argument since v5.0.0. The default AvgRF = TRUE will use the mean of Y_value (the response variable) grouped by levels of the Fixed_Factor and Random_Factor (using table_summary). This ensures that replicates within Random_Factor (or any other unused variable) are averaged (e.g., technical replicates nested within experimental blocks) before fitting a linear model and the denominator Df values are sensible. The name of the data frame in the model object will have (AvgRF) appended to it to indicate the averaging within levels of the Random_Factor. Using AvgRF = FALSE will lead to behaviour like versions < 5.0.0. ... any additional arguments to pass on to lmer if required. #### **Details** These functions require a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. Since v5.0.0, if AvgRF = TRUE, the response variable is averaged over levels of the fixed and random factors (to collapse replicate observations) and reduce the number of denominator degrees of freedom. If you do not want to do this, set AvgRF = FALSE. For more advanced models with slopes and intercept, use mixed_model or mixed_anova using the Formula argument. plot_3d_point_sd 27 Outputs of mixed_model and mixed_model_slopes can be used for post-hoc comparisons with posthoc_Pairwise, posthoc_Levelwise, posthoc_vsRef, posthoc_Trends_Pairwise, posthoc_Trends_Levelwise and posthoc_Trends_vsRefor with emmeans. More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1|R) (which is equivalent to Y ~ A + B + A:B + (1|R)). In mixed_model_slopes and mixed_anova_slopes, the following kind of formula is used: $Y \sim A*B + (S|R)$ (which is equivalent to $Y \sim A + B + A:B + (S|R)$). In this experimental implementation, random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for Slopes_Factor and Random_Factor. #### Value This function returns an S4 object of class "ImerModLmerTest". #### **Examples** ``` #two fixed factors as a vector, #exactly one slope factor and random factor mod <- mixed_model_slopes(data = data_2w_Tdeath, Y_value = "PI", Fixed_Factor = c("Genotype", "Time"), Slopes_Factor = "Time", Random_Factor = "Experiment") #get summary summary(mod)</pre> ``` plot_3d_point_sd Plot of mean & error bars for 1-way ANOVAs with matched shapes mapped to blocking factor. #### Description One of 4 related functions for plotting 1-way ANOVA designs with a blocking factor. ``` 1. plot_3d_point_sd (mean & SD, SEM or CI95 error bars) ``` - 2. plot_3d_scatterbar (bar & SD, SEM or CI95 error bars) - 3. plot_3d_scatterbox (box & whiskers) - 4. plot_3d_scatterviolin (box & whiskers, violin) 28 plot_3d_point_sd ## Usage ``` plot_3d_point_sd(data, xcol, ycol, shapes, facet, ErrorType = "SD", symsize = 3.5, s_alpha = 1, symshape = 22, all_alpha = 0.3, all_size = 2.5, all_shape = 0, all_jitter = 0, ewid = 0.2, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, ethick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) ``` # Arguments | data | a data table, e.g. data.frame or tibble. | |-----------|---| | xcol | name of the column (without quotes) with the categorical factor to be plotted on X axis. | | ycol | name of the column (without quotes) with quantitative variable to plot on the Y axis. | | shapes | name of the column (without quotes) with the blocking factor or another categorical variable. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | ErrorType | select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confi- | dence interval based on t distributions). plot_3d_point_sd 29 | symsize | size of symbols, default set to 3. | |--------------|--| | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to
not show scatter plot. | | symshape | The mean is shown with symbol of the shape number 21 (default, filled circle). Pick a number between 0-25 to pick a different type of symbol from ggplot2. | | all_alpha | fractional opacity of all data points (default = 0.3). Set to non-zero value if you would like all data points plotted in addition to the mean. | | all_size | size of symbols of all data points, if shown (default = 2.5). | | all_shape | all data points are shown with symbols of the shape number 0 (default, open square). Pick a number between 0-25 to pick a different type of symbol from ggplot2. | | all_jitter | reduce overlap of all data points, if shown, by setting a value between 0-1 (default = 0). | | ewid | width of error bars, default set to 0.2. | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | ethick | thickness of error bar lines; default fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | • • • | any additional arguments to pass. | | | | 30 plot_3d_scatterbar #### **Details** The blocking factor (or any other categorical variable) can be mapped to the shapes argument (up to 25 levels allowed). Variables passed to xcol and shapes are internally converted to factors even if they are numeric or other type of variables. In plot_3d_point_sd and plot_3d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_3d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #3d version for 1-way data with blocking #use plot_point_sd when no a blocking factor is not used plot_3d_point_sd(data = data_1w_death, xcol = Genotype, ycol = Death, shapes = Experiment) ``` plot_3d_scatterbar Plot a bar graph for 1-way ANOVAs with matched shapes mapped to blocking factor. #### **Description** One of 4 related functions for plotting 1-way ANOVA designs with a blocking factor. ``` 1. plot_3d_point_sd (mean & SD, SEM or CI95 error bars) ``` - 2. plot_3d_scatterbar (bar & SD, SEM or CI95 error bars) - 3. plot_3d_scatterbox (box & whiskers) - 4. plot_3d_scatterviolin (box & whiskers, violin) plot_3d_scatterbar 31 #### Usage ``` plot_3d_scatterbar(data, xcol, ycol, shapes, facet, ErrorType = "SD", symsize = 3, s_alpha = 0.8, b_alpha = 1, jitter = 0.1, ewid = 0.2, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) ``` # Arguments | data | a data table, e.g. data.frame or tibble. | |-----------|---| | xcol | name of the column (without quotes) with the categorical factor to be plotted on X axis. | | ycol | name of the column (without quotes) with quantitative variable to plot on the Y axis. | | shapes | name of the column (without quotes) with the second categorical factor, for example from a two-way ANOVA design. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | ErrorType | select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confidence interval based on t distributions). | | symsize | size of symbols, default set to 3. | | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha | = 0 to not show scatter plot. 32 plot_3d_scatterbar | extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. ewid width of error bars, default set to 0.2. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can | |---| | TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. | | overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. | | LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. | | waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. | | waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. | | axis. | | facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can | | be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick thickness (in 'pt' units) of lines of boxes; default = fontsize/22. | | ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq logical
TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | any additional arguments to pass. | #### **Details** The blocking factor (or any other categorical variable) can be mapped to the shapes argument (up to 25 levels allowed). Variables passed to xcol and shapes are internally converted to factors even if they are numeric or other type of variables. In plot_3d_point_sd and plot_3d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_3d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from plot_3d_scatterbox 33 within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. ## Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #3d version for 1-way data with blocking #use plot_scatterbar_sd without blocking factor plot_3d_scatterbar(data = data_1w_death, xcol = Genotype, ycol = Death, shapes = Experiment) ``` plot_3d_scatterbox Plot a scatter and box plot for 1-way ANOVAs with matched shapes mapped to blocking factor. ## Description One of 4 related functions for plotting 1-way ANOVA designs with a blocking factor. ``` plot_3d_point_sd (mean & SD, SEM or CI95 error bars) plot_3d_scatterbar (bar & SD, SEM or CI95 error bars) ``` - 3. plot_3d_scatterbox (box & whiskers) - 4. plot_3d_scatterviolin (box & whiskers, violin) #### Usage ``` plot_3d_scatterbox(data, xcol, ycol, shapes, facet, symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.5, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ``` 34 plot_3d_scatterbox ``` facet_scales = "fixed", fontsize = 20, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ...) ``` # Arguments | dat | a | a data table, e.g. data.frame or tibble. | |-----|------------|---| | хсо | ol . | name of the column (without quotes) with the categorical factor to be plotted on X axis. If your table has numeric X, enter xcol = factor(name of colum). | | усо | ol | name of the column (without quotes) with quantitative variable to plot on the Y axis. | | sha | apes | name of the column (without quotes) with the second categorical factor in a two-way ANOVA design. | | fac | cet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | sym | nsize | size of symbols, default set to 3. | | s_a | alpha | fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot. | | b_a | alpha | fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. | | bwi | .d | width of boxes; default 0.5. | | jit | ter | extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. | | Tex | ctXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | Log | gYTrans | transform Y axis into "log10" or "log2" (in quotes). | | Log | gYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | Log | gYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | Log | gYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | fac | cet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fon | ntsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | | | | plot_3d_scatterbox 35 | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | |--------------|--| | bthick | thickness (in 'pt' units) of lines of boxes; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_boxplot. | #### **Details** The blocking factor (or any other categorical variable) can be mapped to the shapes argument (up to 25 levels allowed). Variables passed to xcol and shapes are internally converted to factors even if they are numeric or other type of variables. In plot_3d_point_sd and plot_3d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_3d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #3d version for 1-way data with blocking plot_3d_scatterbox(data = data_1w_death, xcol = Genotype, ycol = Death, shapes = Experiment) #use plot_scatterbox without a blocking factor ``` 36 plot_3d_scatterviolin #### **Description** One of 4 related functions for plotting 1-way ANOVA designs with a blocking factor. ``` plot_3d_point_sd (mean & SD, SEM or CI95 error bars) plot_3d_scatterbar (bar & SD, SEM or CI95 error bars) plot_3d_scatterbox (box & whiskers) plot_3d_scatterviolin (box & whiskers, violin) ``` # Usage ``` plot_3d_scatterviolin(data, xcol, ycol, shapes, facet, symsize = 3, s_alpha = 0.8, b_alpha = 0, v_alpha = 1, bwid = 0.3, vadjust = 1, jitter = 0.1, TextXAngle = 0, scale = "width", trim = TRUE, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, vthick, bythick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ``` plot_3d_scatterviolin 37) #### **Arguments** data a data table, e.g. data.frame or tibble. name of the column (without quotes) with the categorical factor to be plotted on xcol X axis. If your table has numeric X, enter xcol = factor(name of colum). vcol name of the column (without quotes) with quantitative variable to plot on the Y axis. name of the column (without quotes) with the second categorical factor in a shapes two-way ANOVA design. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. size of symbols, default set to 3. symsize fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha s_alpha = 0 to not show scatter plot. b_alpha fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. v_alpha fractional opacity of violins, default set to 1. bwid width of boxes (default 0.3). vadjust number to adjust the smooth/wigglyness of violin plot (default is 1). extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol jitter overlap, set to 0 for aligned symbols. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. set to "area" by default, can be changed to "count" or "width". scale trim set
whether tips of violin plot should be trimmed at high/low data. Default trim = T, can be changed to F. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. bthick thickness (in 'pt' units) of boxplots; default = fontsize/22. 38 plot_3d_scatterviolin | vthick | thickness (in 'pt' units) of violins; default = fontsize/22. | |--------------|--| | bvthick | thickness (in 'pt' units) of both violins and boxplots; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_boxplot or geom_violin. | #### **Details** The blocking factor (or any other categorical variable) can be mapped to the shapes argument (up to 25 levels allowed). Variables passed to xcol and shapes are internally converted to factors even if they are numeric or other type of variables. In plot_3d_point_sd and plot_3d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_3d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #3d version for 1-way data with blocking plot_3d_scatterviolin(data = data_1w_death, xcol = Genotype, ycol = Death, shapes = Experiment) #use plot_scatterviolin without a blocking factor ``` plot_4d_point_sd 39 plot_4d_point_sd Plot mean & error bars for 2-way ANOVAs with or without a blocking factor. #### **Description** There are 4 related functions for 2-way ANOVA type plots. In addition to a categorical variable along the X-axis, a grouping factor is passed to either points, bars or boxes argument in these functions. A blocking factor (or any other categorical variable) can be optionally passed to the shapes argument. ``` plot_4d_point_sd (mean & SD, SEM or CI95 error bars) plot_4d_scatterbar (bar & SD, SEM or CI95 error bars) plot_4d_scatterbox (box & whiskers) plot_4d_scatterviolin (box & whiskers, violin) ``` ``` plot_4d_point_sd(data, xcol, ycol, points, shapes, facet, ErrorType = "SD", symsize = 3.5, s_alpha = 1, symshape = 22, all_alpha = 0.3, all_size = 2.5, all_shape = 0, all_jitter = 0, ewid = 0.2, group_wid = 0.8, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, ethick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ``` 40 plot_4d_point_sd ``` ColSeq = TRUE, ColRev = FALSE, ...) ``` #### **Arguments** data a data table, e.g. data.frame or tibble. xcol name of the column (without quotes) with the variable to plot on X axis (will be converted to a factor/categorical variable). ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. points name of the column with grouping within the factor plotted on X-axis (will be converted to a factor/categorical variable). shapes name of the column (without quotes) that contains matched observations (e.g. subject IDs, experiment number) or another variable to pass on to symbol shapes (will be converted to a factor/categorical variable). If not provided, the shapes for all groups is the same, and can be changed with all_shapes, all_alpha, all_size etc. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. ErrorType select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confi- dence interval based on t distributions). symsize size of symbols, default set to 3.5. s_alpha fractional opacity of symbols, default set to 1 (i.e. fully opaque). symshape The mean is shown with symbol of the shape number 21 (default, filled circle). Pick a number between 0-25 to pick a different type of symbol from ggplot2. all_alpha fractional opacity of all data points (default = 0.3). all_size size of symbols of all data points, if shown (default = 2.5). all_shape all data points are shown with symbols of the shape number 0 (default, open square). Pick a number between 0-25 to pick a different type of symbol from ggplot2. This argument only has an effect if shapes argument is used. all_jitter reduce overlap of all data points, if shown, by setting a value between 0-1 (de- fault = 0). ewid width of error bars, default set to 0.2. group_wid space between the factors along X-axis, i.e., dodge width. Default group_wid = 0.8 (range 0-1), which can be set to 0 if you'd like the two plotted as position = position_identity(). TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. plot_4d_point_sd 41 | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | |--------------|---| | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | ethick | thickness of error bar lines; default fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass to stat_summary or geom_point. | #### **Details** These can be especially useful when the fourth variable shapes is a random factor or blocking factor (up to 25 levels are allowed; there will be an error with more levels). The shapes argument can be left blank to plot ordinary 2-way ANOVAs without blocking. In plot_4d_point_sd and plot_4d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_4d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. ## Value This function returns a ggplot2 object of class "gg" and "ggplot". # Examples ``` #4d version for 2-way data with blocking plot_4d_point_sd(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, points = Time, shapes = Experiment) ``` 42 plot_4d_scatterbar ``` #4d version without blocking factor #`shapes` can
be left blank plot_4d_point_sd(data = data_2w_Festing, xcol = Strain, ycol = GST, points = Treatment) ``` plot_4d_scatterbar Plot scatter plot with bar & error bars for 2-way ANOVAs with or without a blocking factor. ### Description There are 4 related functions for 2-way ANOVA type plots. In addition to a categorical variable along the X-axis, a grouping factor is passed to either points, bars or boxes argument in these functions. A blocking factor (or any other categorical variable) can be optionally passed to the shapes argument. ``` plot_4d_point_sd (mean & SD, SEM or CI95 error bars) plot_4d_scatterbar (bar & SD, SEM or CI95 error bars) plot_4d_scatterbox (box & whiskers) plot_4d_scatterviolin (box & whiskers, violin) ``` ``` plot_4d_scatterbar(data, xcol, ycol, bars, shapes, facet, ErrorType = "SD", symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.7, jitter = 0.1, ewid = 0.2, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", ``` plot_4d_scatterbar 43 ``` fontsize = 20, group_wid = 0.8, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColRev = FALSE, ColSeq = TRUE, ...) ``` #### **Arguments** data a data table, e.g. data.frame or tibble. xcol name of the column (without quotes) with the categorical factor to plot on X axis. If column is numeric, enter as factor(col). ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. bars name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X. If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum). shapes name of the column (without quotes) that contains matched observations (e.g. subject IDs, experiment number) or another variable to pass on to symbol shapes. If not provided, the shapes for all groups is the same. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. ErrorType select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confi- dence interval based on t distributions). symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot. b_alpha fractional opacity of boxes. Default is set to 0, which results in white boxes in- side violins. Change to any value >0 up to 1 for different levels of transparency. bwid width of boxes; default 0.7. jitter extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. ewid width of error bars, default set to 0.2. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. 44 plot_4d_scatterbar | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | |--------------|--| | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | group_wid | space between the factors along X-axis, i.e., dodge width. Default group_wid = 0.8 (range 0-1), which can be set to 0 if you'd like the two plotted as position = position_identity(). | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of bar and error bar lines; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | | any additional arguments to pass to stat_summary or geom_point. | | | | #### **Details** These can be especially useful when the fourth variable shapes is a random factor or blocking factor (up to 25 levels are allowed; there will be an error with more levels). The shapes argument can be left blank to plot ordinary 2-way ANOVAs without blocking. In plot_4d_point_sd and plot_4d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_4d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". # **Examples** ``` #4d version for 2-way data with blocking plot_4d_scatterbar(data = data_2w_Tdeath, ``` plot_4d_scatterbox 45 ``` xcol = Genotype, ycol = PI, bars = Time, shapes = Experiment) #4d version without blocking factor #`shapes` can be left blank plot_4d_scatterbar(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, bars = Time) ``` plot_4d_scatterbox Plot scatter, box & whiskers for 2-way ANOVAs with or without a blocking factor. #### **Description** There are 4 related functions for 2-way ANOVA type plots. In addition to a categorical variable along the X-axis, a grouping factor is passed to either points, bars or boxes argument in these functions. A blocking factor (or any other categorical variable) can be optionally passed to the shapes argument. ``` plot_4d_point_sd (mean & SD, SEM or CI95 error bars) plot_4d_scatterbar (bar & SD, SEM or CI95 error bars) plot_4d_scatterbox (box & whiskers) plot_4d_scatterviolin (box & whiskers, violin) ``` ``` plot_4d_scatterbox(data, xcol, ycol, boxes, shapes, facet, symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.7, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ``` 46 plot_4d_scatterbox ``` facet_scales = "fixed", fontsize = 20, group_wid = 0.8, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, ...) ``` # Arguments ${\tt LogYLimits}$ axis. | guments | | | |------------|---|--| | data | a data table, e.g. data.frame or tibble. | | | xcol | name of the column (without quotes) with the categorical factor to plot on X axis. If column is numeric, enter as factor(col). | | | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. | | | boxes | name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X . If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum). | | | shapes | name of the column (without quotes) that contains matched observations (e.g. subject IDs, experiment number) or another variable to pass on to symbol shapes. If not provided, the shapes for all groups is the same. | | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | | symsize | size of symbols, default set to 3. | | | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot. | | | b_alpha | fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. | | | bwid | width of boxes; default 0.7. | | | jitter | extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. | | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | a vector of length two specifying the range (minimum and maximum) of the Y plot_4d_scatterbox 47 | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | |--------------
--| | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | group_wid | space between the factors along X-axis, i.e., dodge width. Default group_wid = 0.8 (range 0-1), which can be set to 0 if you'd like the two plotted as position = position_identity(). | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxplot lines; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass to geom_boxplot. | #### **Details** These can be especially useful when the fourth variable shapes is a random factor or blocking factor (up to 25 levels are allowed; there will be an error with more levels). The shapes argument can be left blank to plot ordinary 2-way ANOVAs without blocking. In plot_4d_point_sd and plot_4d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_4d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". ### **Examples** ``` #4d version for 2-way data with blocking plot_4d_scatterbox(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, boxes = Time, shapes = Experiment) ``` 48 plot_4d_scatterviolin ``` #4d version without blocking factor #`shapes` can be left blank plot_4d_scatterbox(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, boxes = Time) ``` ## **Description** There are 4 related functions for 2-way ANOVA type plots. In addition to a categorical variable along the X-axis, a grouping factor is passed to either points, bars or boxes argument in these functions. A blocking factor (or any other categorical variable) can be optionally passed to the shapes argument. ``` plot_4d_point_sd (mean & SD, SEM or CI95 error bars) plot_4d_scatterbar (bar & SD, SEM or CI95 error bars) plot_4d_scatterbox (box & whiskers) plot_4d_scatterviolin (box & whiskers, violin) ``` ``` plot_4d_scatterviolin(data, xcol, ycol, boxes, shapes, facet, symsize = 3, s_alpha = 0.8, v_alpha = 1, b_alpha = 0, bwid = 0.3, vadjust = 1, jitter = 0.1, TextXAngle = 0, scale = "width", trim = TRUE, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", ``` plot_4d_scatterviolin 49 ``` fontsize = 20, group_wid = 0.8, symthick, bthick, vthick, bvthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, ...) ``` #### **Arguments** data a data table, e.g. data.frame or tibble. xcol name of the column (without quotes) with the categorical factor to plot on X axis. If column is numeric, enter as factor(col). ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. boxes name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X. If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum). shapes name of the column (without quotes) that contains matched observations (e.g. subject IDs, experiment number) or another variable to pass on to symbol shapes. If not provided, the shapes for all groups is the same. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot. v_alpha fractional opacity of violins, default set to 1. b_alpha fractional opacity of boxes. Default is set to 0, which results in white boxes in- side violins. Change to any value >0 up to 1 for different levels of transparency. bwid width of boxes; default 0.3. vadjust number to adjust the smooth/wigglyness of violin plot (default set to 1). jitter extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. scale set to "area" by default, can be changed to "count" or "width". trim set whether tips of violin plot should be trimmed at high/low data. Default trim = T, can be changed to F. LogYTrans transform Y axis into "log10" or "log2" (in quotes). 50 plot_4d_scatterviolin | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | |--------------|--| | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | group_wid | space between the factors along X-axis, i.e., dodge width. Default group_wid = 0.8 (range 0-1), which can be set to 0 if you'd like the two plotted as position = position_identity(). | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxplots; default = fontsize/22. | | vthick | thickness (in 'pt' units) of violins; default = fontsize/22. | | bvthick | thickness (in 'pt' units) of both violins and boxplots; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass to geom_boxplot or geom_violin. | #### **Details** These can be especially useful when the fourth variable shapes is a random factor or blocking factor (up to 25 levels are allowed; there will be an error with more levels). The shapes argument can be left blank to plot ordinary 2-way ANOVAs without blocking. In plot_4d_point_sd and plot_4d_scatterbar, the default error bar is SD (can be changed to SEM or CI95). In plot_4d_point_sd, a large coloured symbol is plotted at the mean, all other data are shown as smaller symbols. Boxplot uses geom_boxplot to depict median (thicker line), box (interquartile range (IQR)) and the whiskers (1.5*IQR). Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. The resulting ggplot2 graph can take additional geometries or other layers. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". plot_befafter_box 51 #### **Examples** ``` #4d version for 2-way data with blocking plot_4d_scatterviolin(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, boxes = Time, shapes = Experiment) #4d version without blocking factor #`shapes` can be left blank plot_4d_scatterviolin(data = data_2w_Tdeath, xcol = Genotype, ycol = PI, boxes = Time) ``` plot_befafter_box Before-after style graph with a boxplot ## **Description** One of 3 related functions to plot matching data joined by lines. The variable containing information for matching (e.g. matched subjects or experiments etc.) is passed to the match argument. ``` plot_befafter_colours or plot_befafter_colors, plot_befafter_shapes plot_befafter_box ``` ``` plot_befafter_box(data, xcol, ycol, match, facet, PlotShapes = FALSE, symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.4, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ``` 52 plot_befafter_box ``` facet_scales = "fixed", fontsize = 20, symthick, bthick, lthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE,
SingleColour = "NULL", ...) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. xcol name of the column (without quotes) containing the categorical variable to be plotted on the X axis. ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. match name of the column (without quotes) with the grouping variable to pass on to geom_line. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. PlotShapes logical TRUE or FALSE (default = FALSE) if the shape of the symbol is to be mapped to the match variable. Note that only 25 shapes allowed. symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e., 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.4. jitter extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). plot_befafter_box 53 | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | |--------------|--| | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxes; default = (fontsize)/22. | | lthick | thickness (in 'pt' units) of lines; default = (fontsize/1.2)/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_line, geom_point, or facet_wrap. | #### **Details** In plot_befafter_colours/plot_befafter_colors and plot_befafter_shapes setting Boxplot = TRUE will also plot a box and whiskers plot. Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use plot_befafter_colours instead. Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. To plot a graph with a single colour along the X axis variable, use the SingleColour argument. The resulting ggplot2 graph can take additional geometries or other layers. ## Value This function returns a ggplot2 object of class "gg" and "ggplot". # Examples ``` plot_befafter_box(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject) #with PlotShapes = TRUE plot_befafter_box(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject, PlotShapes = TRUE) ``` 54 plot_befafter_colours plot_befafter_colours Plot a before-after plot with lines joining colour-matched symbols. ## **Description** One of 3 related functions to plot matching data joined by lines. The variable containing information for matching (e.g. matched subjects or experiments etc.) is passed to the match argument. ``` plot_befafter_colours or plot_befafter_colors, plot_befafter_shapes plot_befafter_box ``` ``` plot_befafter_colours(data, xcol, ycol, match, facet, Boxplot = FALSE, symsize = 3, s_alpha = 1, jitter = 0.1, bwid = 0.4, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) plot_befafter_colors(data, xcol, ``` plot_befafter_colours 55 ``` ycol, match, facet, Boxplot = FALSE, symsize = 3, s_alpha = 1, jitter = 0.1, bwid = 0.4, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, lthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) ``` ### **Arguments** | data | a data table object, e.g. data.frame or tibble. | |---------|---| | xcol | name of the column (without quotes) containing the categorical variable to be plotted on the X axis. | | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. | | match | name of the column (without quotes) with the matching variable to pass on to geom_line. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | Boxplot | logical TRUE/FALSE, whether to show box and whisker plot or not (default is FALSE) | | symsize | size of symbols, default set to 3. | | s_alpha | fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency). | | jitter | extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. | | bwid | width of boxplots; default 0.4. | 56 plot_befafter_colours | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | |--------------|--| | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxes; default = (fontsize)/22. | | lthick | thickness (in 'pt' units) of lines; default = (fontsize/1.2)/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_line or geom_point. | ## **Details** In plot_befafter_colours/plot_befafter_colors and plot_befafter_shapes setting Boxplot = TRUE will also plot a box and whiskers plot. Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use plot_befafter_colours instead. Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. To plot a graph with a single colour along the X axis variable, use the SingleColour argument. The resulting ggplot2 graph can take additional geometries or other layers. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". plot_befafter_shapes 57 #### **Examples** ```
#plot without legends if necessary plot_befafter_colours(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject, s_alpha = .9, ColSeq = FALSE)+ guides(fill = "none", colour = "none") #remove guides #plot with boxplot plot_befafter_colours(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject, s_alpha = .9, ColSeq = FALSE, Boxplot = TRUE)+ guides(fill = "none", colour = "none") #remove guides ``` ## **Description** One of 3 related functions to plot matching data joined by lines. The variable containing information for matching (e.g. matched subjects or experiments etc.) is passed to the match argument. ``` plot_befafter_colours or plot_befafter_colors, plot_befafter_shapes plot_befafter_box ``` ``` plot_befafter_shapes(data, xcol, ycol, match, facet, Boxplot = FALSE, symsize = 3, s_alpha = 1, bwid = 0.4, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", ``` ``` fontsize = 20, symthick, bthick, lthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ...) ``` # Arguments | rguments | | | |---|--|--| | a data table object, e.g. data.frame or tibble. | | | | name of the column (without quotes) containing the categorical variable to be plotted on the X axis. | | | | name of the column (without quotes) with the quantitative variable to plot on the Y axis. | | | | name of the column (without quotes) with the matching variable to pass on to geom_line. | | | | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | | | logical TRUE/FALSE, whether to show box and whisker plot or not (default is FALSE) | | | | size of symbols, default set to 3. | | | | fractional opacity of symbols, default set to 1. | | | | width of boxplots; default 0.4. | | | | extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols. | | | | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | | | transform Y axis into "log10" or "log2" (in quotes). | | | | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | | | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | | | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | | | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | | | parameter of base_size of fonts in theme_classic, default set to size 20. | | | | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | | | | | | plot_befafter_shapes 59 | bthick | thickness (in 'pt' units) of boxes; default = (fontsize)/22. | |--------------|--| | lthick | thickness (in 'pt' units) of lines; default = (fontsize/1.2)/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_line or geom_point. | #### **Details** In plot_befafter_colours/plot_befafter_colors and plot_befafter_shapes setting Boxplot = TRUE will also plot a box and whiskers plot. Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use plot_befafter_colours instead. Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. To plot a graph with a single colour along the X axis variable, use the SingleColour argument. The resulting ggplot2 graph can take additional geometries or other layers. ## Value This function returns a ggplot2 object of class "gg" and "ggplot". ### **Examples** ``` #plot without legends if necessary plot_befafter_colors(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject, s_alpha = .9, ColSeq = FALSE)+ guides(fill = "none", colour = "none") #remove guides #plot with boxplot plot_befafter_colors(data = data_t_pdiff, xcol = Condition, ycol = Mass, match = Subject, s_alpha = .9, ColSeq = FALSE, Boxplot = TRUE)+ guides(fill = "none", colour = "none") #remove guides ``` plot_density plot_density Plot density distribution of data. ## **Description** This function takes a data table, ycol of quantitative variable and a categorical grouping variable (group), if available, and plots a density graph using geom_density). Alternatives are plot_histogram, or plot_qqline. ## Usage ``` plot_density(data, ycol, group, facet, PlotType = c("Density", "Counts", "Normalised counts"), c_alpha = 0.2, TextXAngle = 0, facet_scales = "fixed", fontsize = 20, linethick, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = NULL,) ``` ## **Arguments** | data | a data table e.g. data.frame or tibble. | |----------|--| | ycol | name of the column (without quotes) with the quantitative variable whose density distribution is to be plotted. | | group | name of the column containing a categorical grouping variable (optional Since v5.0.0). | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | PlotType | the default (Density) plot will be the probability density curve, which can be changed to Counts or Normalised counts. | | plot_aensity | | | 61 | |--------------|--|--|----| | | | | | | | | | | | c_alpha | fractional opacity of filled colours under the curve, default set to 0.2 (i.e. 20% opacity). | |--------------|--| | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | linethick | thickness of symbol border, default set to fontsize/22. | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_density. | ### **Details** Note that the function requires the quantitative Y variable first, and groups them based on an X variable. The group variable is mapped to the fill and colour aesthetics in <code>geom_density</code>. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with <code>plot_grafify_palette</code>. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the
most distant ones using <code>colorRampPalette</code>. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". 62 plot_dotbar_sd ### **Examples** ``` plot_density(data = data_t_pratio, ycol = log(Cytokine), group = Genotype) #with faceting plot_density(data = data_cholesterol, ycol = Cholesterol, group = Treatment, facet = Treatment, fontsize = 12) #Counts plot_density(data = data_cholesterol, ycol = Cholesterol, group = Treatment, PlotType = "Counts", facet = Treatment, fontsize = 12) ``` plot_dotbar_sd Plot a dotplot on a bar graph with SD error bars with two variables. ### Description There are three types of plot_dot_ functions that plot data as "dots" using the geom_dotplot geometry. They all take a data table, a categorical X variable and a numeric Y variable. - 1. plot_dotbar_sd (bar & SD, SEM or CI95 error bars) - 2. plot_dotbox (box & whiskers) - 3. plot_dotviolin (box & whiskers, violin) ``` plot_dotbar_sd(data, xcol, ycol, facet, ErrorType = "SD", dotsize = 1.5, d_{alpha} = 0.8, b_alpha = 1, bwid = 0.5, ewid = 0.2, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", ``` plot_dotbar_sd 63 ``` fontsize = 20, dotthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ...) ``` ### **Arguments** data a data table object, e.g. data.frame or tibble. xcol name of the column (without quotes) to plot on X axis. This should be a cate- gorical variable. ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. ErrorType select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confi- dence interval based on t distributions). dotsize size of dots relative to binwidth used by geom_dotplot. Default set to 1.5, increase/decrease as needed. d_alpha fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). b_alpha fractional opacity of bars, default set to 1. bwid width of bars; default 0.5. ewid width of error bars, default set to 0.2. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. plot_dotbar_sd | bthick | thickness (in 'pt' units) of bar and error bar lines; default = fontsize/22. | |--------------|--| | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_dotplot. | #### **Details** Related plot_scatter_ variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd (or SEM or CI95 error bars), plot_scatterbox and plot_scatterviolin. Over plotting in plot_scatter variants can be reduced with the jitter argument. The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". #### **Examples** ``` plot_dotbar_sd(data = data_cholesterol, xcol = Treatment, ycol = Cholesterol) plot_dotbar_sd(data = data_1w_death, xcol = Genotype, ycol = Death, ColPal = "pale", ColSeq = FALSE, ColRev = TRUE) #single colour along X plot_dotbar_sd(data = data_1w_death, xcol = Genotype, ycol = Death, SingleColour = "light_orange") ``` plot_dotbox 65 plot_dotbox Plot a dotplot on a boxplot with two variables. ### **Description** There are three types of plot_dot_ functions that plot data as "dots" using the geom_dotplot geometry. They all take a data table, a categorical X variable and a numeric Y variable. ``` plot_dotbar_sd (bar & SD, SEM or CI95 error bars) plot_dotbox (box & whiskers) plot_dotviolin (box & whiskers, violin) ``` ## Usage ``` plot_dotbox(data, xcol, ycol, facet, dotsize = 1.5, d_{alpha} = 0.8, b_alpha = 1, bwid = 0.5, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, dotthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. xcol name of the column (without quotes) to plot on X axis. This should be a categorical variable. plot_dotbox | dotsize size of dots relative to binwidth used by geom_dotplot. Default set to 1.5, increase/decrease as needed. d_alpha fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. TextXangle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLimits argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired breaks. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. any additional arguments to pass to geom_boxplot or geom_dotplot. | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. |
---|--------------|---| | increase/decrease as needed. d_alpha fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | facet | | | b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | dotsize | • - | | width of boxplots; default 0.5. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits avector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). singleColour accolour should the than "black"; use grey_lin11, which is almost black. | d_alpha | fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). | | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | b_alpha | fractional opacity of boxes, default set to 1. | | overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen
palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | bwid | width of boxplots; default 0.5. | | LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | TextXAngle | | | waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | LogYBreaks | | | axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | LogYLabels | | | be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | LogYLimits | | | dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | facet_scales | be fixed (default), free, free_y or free_x (for Y and X axis one at a time, | | bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | dotthick | | | for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | bthick | thickness (in 'pt' units) of boxplot lines; default = fontsize/22. | | palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be
set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | ColPal | | | can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | ColSeq | | | names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | ColRev | • | | any additional arguments to pass to geom_boxplot or geom_dotplot. | SingleColour | names of colours from grafify or base R palettes to fill along X-axis aesthetic. | | | | any additional arguments to pass to geom_boxplot or geom_dotplot. | ## **Details** Related plot_scatter_ variants show data symbols using the <code>geom_point</code> geometry. These are <code>plot_scatterbar_sd</code> (or SEM or CI95 error bars), <code>plot_scatterbox</code> and <code>plot_scatterviolin</code>. Over plotting in <code>plot_scatter</code> variants can be reduced with the <code>jitter</code> argument. The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins. plot_dotviolin 67 Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". #### **Examples** ``` plot_dotbox(data = data_1w_death, xcol = Genotype, ycol = Death) plot_dotbox(data = data_1w_death, xcol = Genotype, ycol = Death, ColPal = "vibrant", b_alpha = 0.5) plot_dotbox(data = data_1w_death, xcol = Genotype, ycol = Death, SingleColour = "safe_bluegreen", b_alpha = 0.5) ``` plot_dotviolin Plot a dotplot on a violin plot with two variables. #### **Description** There are three types of plot_dot_ functions that plot data as "dots" using the geom_dotplot geometry. They all take a data table, a categorical X variable and a numeric Y variable. ``` 1. plot_dotbar_sd (bar & SD, SEM or CI95 error bars) ``` - 2. plot_dotbox (box & whiskers) - 3. plot dotviolin (box & whiskers, violin) ``` plot_dotviolin(data, xcol, ycol, facet, dotsize = 1.5, d_alpha = 0.8, b_alpha = 0, v_alpha = 1, ``` 68 plot_dotviolin ``` bwid = 0.3, vadjust = 1, trim = TRUE, scale = "width", TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, dotthick, bthick, vthick, bvthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL",) ``` #### **Arguments** | data | a data table object, e.g. data.frame or tibble. | |------------|--| | xcol | name of the column (without quotes) to plot on X axis. This should be a categorical variable. | | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | dotsize | size of dots relative to binwidth used by geom_dotplot. Default set to 1.5, increase/decrease as needed. | | d_alpha | fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). | | b_alpha | fractional opacity of boxplots. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. | | v_alpha | fractional opacity of violins, default set to 1. | | bwid | width of boxplots; default 0.3. | | vadjust | number to adjust the smooth/wigglyness of violin plot (default set to 1). | | trim | set whether tips of violin plot should be trimmed at high/low data. Default trim = TRUE, can be changed to FALSE. | | scale | set to "area" by default, can be changed to "count" or "width". | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove | overlapping text. plot_dotviolin 69 | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | |--------------|--| | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | dotthick | thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. | | bthick | thickness (in 'pt' units) of boxplots; default = fontsize/22. | | vthick | thickness (in 'pt' units) of violins; default = fontsize/22. | | bvthick | thickness (in 'pt' units) of both violins and boxplots; default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_boxplot, geom_dotplot or geom_violin. | | | | #### **Details** Related plot_scatter_ variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd (or SEM or CI95 error bars), plot_scatterbox and plot_scatterviolin. Over plotting in plot_scatter variants can be reduced with the jitter argument. The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". 70 plot_gam_predict ### **Examples** ``` #plot with trim = FALSE plot_dotviolin(data = data_t_pdiff, xcol = Condition, ycol = Mass, dotsize = 2, trim = FALSE) plot_dotviolin(data = data_t_pdiff, xcol = Condition, ycol = Mass, trim = FALSE, b_alpha = 0.5, ColPal = "pale", ColSeq = FALSE) #single colour along X plot_dotviolin(data = data_t_pdiff, xcol = Condition, ycol = Mass, trim = FALSE, b_alpha = 0.5, SingleColour = "pale_cyan") ``` plot_gam_predict Plot prediction of gam model ## Description Plot prediction of gam model #### Usage ``` plot_gam_predict(Model, xcol, ycol, ByFactor, symsize = 1, s_alpha = 0.1, smooth_alpha = 0.7, linethick, fontsize = 20, ...) ``` ## Arguments Model a generalised additive model (gam) fitted with ga_model or mgcv xcol the smooth in the gam (should match variable in the model exactly) ycol the dependent variable in gam (should match variable in the model exactly) ByFactor the by factor used in gam (should match variable in the model exactly) symsize size of symbols (default = 1) plot_grafify_palette 71 ``` s_alpha opacity of symbols (default = 0.1) smooth_alpha opacity of the predicted CI interval (default = 0.7) linethick thickness of symbol lines (default = fontsize/22) fontsize base font size for graph ... additional arguments to pass to plot_xy_CatGroup. ``` #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #fit zooplankton data z1 <- ga_model(data = data_zooplankton, Y_value = "log(density_adj)", Fixed_Factor = "taxon", Smooth_Factor = "day") #plot fitted data plot_gam_predict(Model = z1, xcol = day, ycol = `log(density_adj)`, ByFactor = taxon)</pre> ``` ## Description This simple function allows quick visualisation of colours in grafify palettes and their hex codes. It uses plot_scatterbar_sd and some arguments are similar and can be adjusted. ``` plot_grafify_palette(palette = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
"light", "muted", "pale", "r4", "safe", "vibrant", "OrBl_div", "PrGn_div", "blue_conti", "grey_conti", "yellow_conti"), fontsize = 14, ...) ``` 72 plot_histogram ## Arguments ``` palette name of grafify palettes: "okabe_ito", "vibrant, "bright", "pale", "muted", "dark", "light", "contrast" or "all_grafify". fontsize font size. ... any additional parameters to pass to plot_scatterbar_sd ``` #### Value This function returns a ggplot2 object of class "gg" and "ggplot". # Examples ``` plot_grafify_palette("pale") plot_grafify_palette("contrast") ``` plot_histogram Plot data distribution as histograms. ## **Description** This function takes a data table, a quantitative variable (ycol) and a grouping variable (group), if available, and plots a histogram graph using geom_histogram). Alternatives are plot_density, or plot_qqline. ``` plot_histogram(data, ycol, group, facet, PlotType = c("Counts", "Normalised counts"), BinSize = 30, c_{alpha} = 0.8, TextXAngle = 0, facet_scales = "fixed", fontsize = 20, linethick, alpha, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ``` plot_histogram 73 ``` ColSeq = TRUE, ColRev = FALSE, SingleColour = NULL, ...) ``` #### **Arguments** data a data table e.g. data.frame or tibble. ycol name of the column (without quotes) with the quantitative variable whose his- togram distribution is to be plotted. group name of the column containing a categorical grouping variable. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. PlotType the default (Counts) plot will plot counts in the bins, which can be changed to Normalised counts. BinSize number of distinct bins to use on X-axis, default set to 30. c_alpha fractional opacity of colour filled within histograms, default set to 0.8 (i.e. 80% opacity). TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. linethick thickness of symbol border, default set to fontsize/22. alpha deprecated old argument for c_alpha; retained for backward compatibility. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. ... any additional arguments to pass to geom_histogram. 74 plot_lm_predict #### **Details** Note that the function requires the quantitative Y variable first, and groups them based on a categorical variable passed on via the group argument. The grouping variable is mapped to the fill aesthetics in geom_histogram. ColPal & ColRev options are applied to both fill and colour scales. Colours available can be seen quickly with plot_grafify_palette. Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ### **Examples** ``` #Basic usage plot_histogram(data = data_t_pratio, ycol = Cytokine, group = Genotype, BinSize = 10) #with log transformation plot_histogram(data = data_t_pratio, ycol = log(Cytokine), group = Genotype, BinSize = 10) #Normalised counts plot_histogram(data = data_t_pratio, ycol = log(Cytokine), group = Genotype, PlotType = "Normalised counts", BinSize = 10) ``` plot_lm_predict Plot data and predictions from linear model ### **Description** This function takes a linear model, and up to three variables and plots observe data (circles) and model predictions (squares). If the X-variable is categorical, a box and whiskers plot is overlaid. A variable (ByFactor) can be used for faceting. ### Usage ``` plot_lm_predict(Model, xcol, ycol, ByFactor, obs_size = 2, ``` plot_lm_predict 75 ``` obs_alpha = 0.3, pred_size = 2, pred_alpha = 0.8, linethick, base_size = 15, ...) ``` ### **Arguments** | Model | a linear model saved with simple_model, mixed_model or ga_model. | |------------|---| | xcol | variable along the X axis (should match one of the dependent variables in model exactly). | | ycol | independent variable along the Y axis (should match independent variable in model exactly). | | ByFactor | optional faceting variable (should match one of the variables in model exactly). | | obs_size | size of symbols for observed data (default = 2). | | obs_alpha | opacity of symbols for observed data (default = 0.3). | | pred_size | size of symbols for predicted data (default = 2). | | pred_alpha | opacity of symbols for predicted data (default = 0.8). | | linethick | thickness of border lines for boxes and symbols (default is base_size/20). | | base_size | base fontsize for theme_grafify | | | any other parameters to be passed to theme_grafify | ## Value This function returns a ggplot2 object of class "gg" and "ggplot". # **Examples** ``` #fit a model deathm1 <- mixed_model(data_2w_Tdeath,</pre> "PI", c("Genotype", "Time"), "Experiment") #plot model plot_lm_predict(deathm1, Genotype, PI, Time) #fit zooplankton data z1 <- ga_model(data = data_zooplankton,</pre> Y_value = "log(density_adj)", Fixed_Factor = "taxon", Smooth_Factor = "day") #plot fitted data plot_lm_predict(Model = z1, xcol = day, ycol = `log(density_adj)`, ByFactor = taxon) ``` 76 plot_logscale plot_logscale Add log transformations to graphs # Description This function allows "log10" or "log2" transformation of X or Y axes. With "log10" transformation, log10 ticks are also added on the outside. # Usage ``` plot_logscale(Plot, LogYTrans = "log10", LogXTrans, LogYBreaks = waiver(), LogXBreaks = waiver(), LogYLimits = NULL, LogYLabels = waiver(), LogXLabels = waiver(), fontsize = 22, ...) ``` ## **Arguments** | Plot | a ggplot2 object. | |------------|--| | LogYTrans | transform Y axis into "log10" (default) or "log2" | | LogXTrans | transform X axis into "log10" or "log2" | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogXBreaks | argument for scale_x_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | LogXLimits | a vector of length two specifying the range (minimum and maximum) of the X axis. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogXLabels | argument for scale_x_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | fontsize | this parameter sets the linewidth of the log10 tickmarks (8*fontsize/22 for long ticks and 4*fontsize/22 for middle ticks). It is set to 20 as default to be consistent with rest of grafify. It will need to be changed to 12, which is the default fontsize for graphs produced natively with ggplot2. | | | any other arguments to pass to scale_y_continuous or scale_x_continuous | plot_point_sd 77 ### **Details** Arguments allow for axes limits, breaks and labels to passed on. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ### **Examples** ``` #save a ggplot object P <- ggplot(data_t_pratio, aes(Genotype,Cytokine))+ geom_jitter(shape = 21, size = 5, width = .2, aes(fill = Genotype), alpha = .7) #transform Y axis plot_logscale(Plot = P) #or in one go plot_logscale(ggplot(data_t_pratio, aes(Genotype,Cytokine))+ geom_jitter(shape = 21, size = 5, width = .2, aes(fill = Genotype), alpha = .7)) ``` plot_point_sd Plot a point as mean with SD error bars using two variables. ## **Description** There are 4 related functions that use geom_point to plot a categorical variable along the X axis. ``` 1. plot_point_sd (mean & SD, SEM or CI95 error bars) ``` - 2. plot_scatterbar_sd (bar & SD, SEM or CI95 error bars) - 3. plot_scatterbox (box & whiskers) - 4. plot_scatterviolin (box & whiskers, violin) # Usage ``` plot_point_sd(data, xcol, ycol, facet, ErrorType = "SD",
``` 78 plot_point_sd ``` symsize = 3.5, s_alpha = 1, symshape = 22, all_alpha = 0.3, all_size = 2.5, all_shape = 1, all_jitter = 0, ewid = 0.2, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, ethick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ) ``` ## **Arguments** | data | a data table object, e.g. data.frame or tibble. | |-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | xcol | name of the column (without quotes) with a X variable (will be forced to be a factor/categorical variable). | | ycol | name of the column (without quotes) with quantitative Y variable. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | ErrorType | select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confidence interval based on t distributions). | | symsize | size of point symbols, default set to 3.5. | | s_alpha | fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency). | | symshape | The mean is shown with symbol of the shape number 22 (default, filled square). Pick a number between 21-25 to pick a different type of symbol from ggplot2. | | all_alpha | fractional opacity of all data points (default = $0.3$ ). Set to non-zero value if you would like all data points plotted in addition to the mean. | | all_size | size of symbols of all data points, if shown (default = 2.5). | | all_shape | all data points are shown with symbols of the shape number 1 (default, transparent circle). Pick a number between 0-25 to pick a different type of symbol from | ggplot2. plot_point_sd 79 | all_jitter | reduce overlap of all data points, if shown, by setting a value between 0-1 (default = $0$ ). | |--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ewid | width of error bars, default set to 0.2. | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | thickness of symbol border, default set to fontsize/22. | | ethick | thickness of error bar lines; default fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | • • • | any additional arguments to pass to stat_summary. | #### **Details** These functions take a data table, categorical X and numeric Y variables, and plot various geometries. The X variable is mapped to the fill aesthetic of symbols. In plot_point_sd and plot_scatterbar_sd, default error bars are SD, which can be changed to SEM or CI95. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If there are many groups along the X axis and you prefer a single colour for the graph, use the SingleColour argument. plot_qqline ### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` #Basic usage plot_point_sd(data = data_doubling_time, xcol = Student, ycol = Doubling_time) ``` plot_qqline *Plot quantile-quantile (QQ) graphs from data.* ### **Description** This function takes a data table, a quantitative variable (ycol), and a categorical grouping variable (group), if available, and plots a QQ graph using stat_qq and stat_qq_line. Alternatives are plot_histogram, or plot_qqline. ### Usage ``` plot_qqline( data, ycol, group, facet, symsize = 3, s_alpha = 0.8, TextXAngle = 0, facet_scales = "fixed", fontsize = 20, symthick, linethick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, ) ``` # Arguments data a data table e.g. data.frame or tibble. ycol name of the column (without quotes) with the quantitative variable whose distribution is to be plotted. group name of the column containing a categorical grouping variable. plot_qqline 81 | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | symsize | size of symbols, default set to 3. | | s_alpha | fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency). | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | facet_scales | whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | thickness of symbol border, default set to fontsize/22. | | linethick | thickness of lines, default set to fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass to geom_qq or geom_qq_line. | # Details Note that the function requires the quantitative Y variable first, and a grouping variable as group if required. The graph plots sample quantiles on Y axis & theoretical quantiles on X axis. The X variable is mapped to the fill aesthetic instat_qq and colour aesthetic for the stat_qq_line. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. When only one level is present within group, symbols will receive "ok_orange" colour. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ## **Examples** ``` plot_qqline(data = data_cholesterol, ycol = Cholesterol, group = Treatment) ``` 82 plot_qqmodel ## **Description** This function takes a linear model (simple or mixed effects) and plots a QQ graph after running rstudent from rstudent to generate a table of Studentised model residuals on an ordinary (simple_model), mixed model (mixed_model or mixed_model_slopes. The graph plots studentised residuals from the model (sample) on Y axis & Theoretical quantiles on X axis. ## Usage ``` plot_qqmodel( Model, symsize = 3, s_alpha = 0.8, fontsize = 20, symthick, linethick, SingleColour = "#E69F00" ) ``` ## **Arguments** | Model | name of a saved model generated by simple_model or mixed_model. | |--------------|---------------------------------------------------------------------------| | symsize | size of symbols, default set to 3. | | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e., 80% opacity). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | thickness of symbol border, default set to fontsize/22. | | linethick | thickness of line, default set to fontsize/22. | | SingleColour | colour of symbols (default = #E69F00, which is ok_orange) | ### **Details** For generalised additive models fit with mgcv, scaled Pearson residuals are
plotted. The function uses geom_qq and geom_qq_line geometries. Symbols receive "ok_orange" colour by default. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". plot_qq_gam 83 ### **Examples** ``` #Basic usage m1 <- simple_model(data = data_2w_Festing, Y_value = "GST", Fixed_Factor = c("Treatment", "Strain")) plot_qqmodel(m1)</pre> ``` plot_qq_gam Plot model diagnostics for generalised additive models ### **Description** This is a clone of the appraise function in the gratia package (rewritten to avoid depending on gratia package for these plots). This function will plot 4 diagnostic plots when given a generalised additive model fitted with ga_model or mgcv. It creates graphs that use grafify colours and theme_grafify(). ## Usage ``` plot_qq_gam( Model, symsize = 2, s_colour = "#E69F00", s_alpha = 0.6, line_col = "black", base_size = 12, linethick, n_bins = c("sturges", "scott", "fd") ) ``` ## **Arguments** ``` Model a model of class gam fitted with ga_model or the mgcv package. symsize size of symbols (default = 2) s_colour colour of symbols (default = ok_orange) s_alpha opacity of symbols (default = 0.8) line_col colour of lines (default = black) base_size font size for theme (default = 12) linethick thickness in 'pt' units of lines and symbol orders (default = base_size/22) one of either "sturges", "scott", "fd" n_bins ``` ### Value This function returns an object of classes "ggplot" and "gg". This function returns a ggplot2 object of class "gg" and "ggplot". 84 plot_scatterbar_sd plot_scatterbar_sd Plot scatter dots on a bar graph with SD error bars with two variables. ### **Description** There are 4 related functions that use geom_point to plot a categorical variable along the X axis. ``` 1. plot_point_sd (mean & SD, SEM or CI95 error bars) ``` - 2. plot_scatterbar_sd (bar & SD, SEM or CI95 error bars) - 3. plot_scatterbox (box & whiskers) - 4. plot_scatterviolin (box & whiskers, violin) ## Usage ``` plot_scatterbar_sd( data, xcol, ycol, facet, ErrorType = "SD", symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.5, ewid = 0.3, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ) ``` ### **Arguments** data a data table object, e.g. data.frame or tibble. plot_scatterbar_sd 85 xcol name of the column (without quotes) to plot on X axis. This should be a categorical variable. ycol name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. ErrorType select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confidence interval based on t distributions). symsize size of point symbols, default set to 3. fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). s_alpha b_alpha fractional opacity of boxes, default set to .5 (i.e. 50% transparent). bwid width of bars, default set to 0.5. width of error bars, default set to 0.3. ewid jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogYBreaks argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. a vector of length two specifying the range (minimum and maximum) of the Y LogYLimits axis. facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. bthick thickness (in 'pt' units) of both bar and error bar lines; default = fontsize/22. ColPal grafify colour palette to apply (in quotes), default "okabe ito"; see graf_palettes for available palettes. logical TRUE or FALSE. Default TRUE for sequential colours from chosen ColSeq palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. any additional arguments to pass to facet_wrap. 86 plot_scatterbox #### **Details** These functions take a data table, categorical X and numeric Y variables, and plot various geometries. The X variable is mapped to the fill aesthetic of symbols. In plot_point_sd and plot_scatterbar_sd, default error bars are SD, which can be changed to SEM or CI95. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". ### **Examples** ``` #with jitter plot_scatterbar_sd(data = data_cholesterol, xcol = Treatment, ycol = Cholesterol) plot_scatterbar_sd(data = data_doubling_time, xcol = Student, ycol = Doubling_time, SingleColour = "ok_grey") ``` plot_scatterbox Plot a scatter plot on a boxplot with two variables. ## **Description** There are 4 related functions that use geom_point to plot a categorical variable along the X axis. - 1. plot_point_sd (mean & SD, SEM or CI95 error bars) - 2. plot_scatterbar_sd (bar & SD, SEM or CI95 error bars) - 3. plot_scatterbox (box & whiskers) - 4. plot_scatterviolin (box & whiskers, violin) plot_scatterbox 87 ## Usage ``` plot_scatterbox( data, xcol, ycol, facet, symsize = 3, s_alpha = 0.8, b_alpha = 1, bwid = 0.5, jitter = 0.1, TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, Ylabels = waiver(), ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ) ``` ## **Arguments** | data | a data table object, e.g. data.frame or tibble. | |------------|-----------------------------------------------------------------------------------------------------------------------------------| | xcol | name of the column (without quotes) to plot on X axis. This should be a categorical variable. | | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | symsize | size of symbols, default set to 3. | | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). | | b_alpha | fractional opacity of boxes, default set to 1. | | bwid | width of boxplots; default 0.5. | | jitter | extent of jitter (scatter) of symbols, default is 0.1. | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | 88 plot_scatterbox | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | |--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | facet_scales | whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxplot lines; default = fontsize/22. | | Ylabels | deprecated, use LogYLabels instead. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to
fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_boxplot. | ### Details These functions take a data table, categorical X and numeric Y variables, and plot various geometries. The X variable is mapped to the fill aesthetic of symbols. In plot_point_sd and plot_scatterbar_sd, default error bars are SD, which can be changed to SEM or CI95. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". plot_scatterviolin 89 ### **Examples** ``` plot_scatterbox(data = data_cholesterol, xcol = Treatment, ycol = Cholesterol) plot_scatterbox(data = data_doubling_time, xcol = Student, ycol = Doubling_time, SingleColour = "ok_grey") ``` plot_scatterviolin Plot a scatter plot on a violin plot with two variables. # Description There are 4 related functions that use geom_point to plot a categorical variable along the X axis. - 1. plot_point_sd (mean & SD, SEM or CI95 error bars) - 2. plot_scatterbar_sd (bar & SD, SEM or CI95 error bars) - 3. plot_scatterbox (box & whiskers) - 4. plot_scatterviolin (box & whiskers, violin) ## Usage ``` plot_scatterviolin( data, xcol, ycol, facet, symsize = 3, s_alpha = 0.8, b_alpha = 0, v_alpha = 1, bwid = 0.3, vadjust = 1, jitter = 0.1, trim = TRUE, scale = "width", TextXAngle = 0, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, facet_scales = "fixed", fontsize = 20, symthick, bthick, ``` 90 plot_scatterviolin ``` vthick, bvthick, Ylabels = waiver(), ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = "NULL", ... ) ``` # Arguments | 8 | | |------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | data | a data table object, e.g. data.frame or tibble. | | xcol | name of the column (without quotes) to plot on X axis. This should be a categorical variable. | | ycol | name of the column (without quotes) with the quantitative variable to plot on the Y axis. This should be a quantitative variable. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | symsize | size of dots relative to binwidth used by geom_point. Default set to 3. | | s_alpha | fractional opacity of symbols, default set to to 0.8 (i.e, $80\%$ opacity). Set $s_alpha = 0$ to not show scatter plot. | | b_alpha | fractional opacity of boxplots. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. | | v_alpha | fractional opacity of violins, default set to 1. | | bwid | width of boxplots; default 0.3. | | vadjust | number to adjust the smooth/wigglyness of violin plot (default set to 1). | | jitter | extent of jitter (scatter) of symbols, default is 0 (i.e. aligned symbols). To reduce symbol overlap, try 0.1-0.3 or higher. | | trim | set whether tips of violin plot should be trimmed at high/low data. Default trim = T, can be changed to F. | | scale | set to "area" by default, can be changed to "count" or "width". | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y | axis. 91 plot_scatterviolin | facet_scales | whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | |--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | thickness (in 'pt' units) of boxplots; default = fontsize/22. | | vthick | thickness (in 'pt' units) of violins; default = fontsize/22. | | bvthick | thickness (in 'pt' units) of both violins and boxplots; default = fontsize/22. | | Ylabels | deprecated, use LogYLabels instead. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | SingleColour | a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from grafify or base R palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. | | | any additional arguments to pass to geom_boxplot, geom_point or geom_violin. | #### **Details** These functions take a data table, categorical X and numeric Y variables, and plot various geometries. The X variable is mapped to the fill aesthetic of symbols. In plot_point_sd and plot_scatterbar_sd, default error bars are SD, which can be changed to SEM or CI95. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. If you prefer a single colour for the graph, use the SingleColour argument. ### Value This function returns a ggplot2 object of class "gg" and "ggplot". # **Examples** ``` #plot without jitter plot_scatterviolin(data = data_t_pdiff, xcol = Condition, ycol = Mass, symsize = 2, trim = FALSE) #no symbols ``` 92 plot_xy_CatGroup ``` plot_scatterviolin(data = data_t_pdiff, xcol = Condition, ycol = Mass, s_alpha = 0, symsize = 2, trim = FALSE) ``` plot_xy_CatGroup Plot points on a quantitative X - Y plot & a categorical grouping variable. # Description This function takes a data table, quantitative X and Y variables along with a categorical grouping variable, and a and plots a graph with using <code>geom_point</code>. The categorical <code>CatGroup</code> variable is mapped to the fill aesthetic of symbols. ## Usage ``` plot_xy_CatGroup( data, xcol, ycol, CatGroup, facet, Boxplot = FALSE, Mean = FALSE, ErrorType = "SD", symsize = 3, s_alpha = 0.8, TextXAngle = 0, LogYTrans, LogXTrans, LogYBreaks = waiver(), LogXBreaks = waiver(), LogYLabels = waiver(), LogXLabels = waiver(), LogYLimits = NULL, LogXLimits = NULL, facet_scales = "fixed", fontsize = 20, bwid = 0.3, b_alpha = 0.3, l_alpha = 0.8, e_{alpha} = 0.8, all_size = 2, all_alpha = 0.5, symthick, ``` plot_xy_CatGroup 93 ``` bthick, ethick, ewid = 0.2, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, ... ) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. xcol name of the column (without quotes) with quantitative X variable. ycol name of the column (without quotes) with quantitative Y variable. CatGroup a categorical variable as grouping factor for colour of data points, should be a categorical variable for default colours to work. Will be converted to factor if your column is numeric facet add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. Boxplot logical TRUE/FALSE to plot box and whiskers plot (default = FALSE). Mean logical TRUE/FALSE to plot mean and SD/SEM/CI95 error bars (default = FALSE). ErrorType select the type of error bars to display. Default is "SD" (standard deviation). Other options are "SEM" (standard error of the mean) and "CI95" (95% confi- dence interval based on t distributions). symsize size of symbols used by geom_point. Default set to 3. s_alpha fractional opacity of symbols, default set to to 0.8 (i.e, 80% opacity). TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. LogYTrans transform Y axis into "log10" or "log2" (in quotes). LogXTrans transform X axis into "log10" or "log2" LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogXBreaks argument for ggplot2[scale_x_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for
ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogXLabels argument for ggplot2[scale_x_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. LogXLimits a vector of length two specifying the range (minimum and maximum) of the X axis. 94 plot_xy_CatGroup | facet_scales | whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | bwid | width of boxplot (default = $0.3$ ). | | b_alpha | fractional opacity of boxes, (default = $0.3$ ). | | l_alpha | fractional opacity of lines joining boxes, (default = 0.8). | | e_alpha | fractional opacity of error bars, (default = $0.8$ ). | | all_size | size of symbols of all data points, if shown (default = 2.5). | | all_alpha | fractional opacity of all data points (default = $0.3$ ). Set to non-zero value if you would like all data points plotted in addition to the mean. | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | size (in 'pt' units) of outline of boxes, whisker and joining lines (stroke), default = fontsize/22. | | ethick | thickness of error bar lines; default fontsize/22. | | ewid | width of error bars, default set to 0.2. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColSeq | logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass on. | ## **Details** A box and whisker plot with lines joining the medians can be plotted with Boxplot = TRUE. If only box plot is needed without the line, set the opacity of the line to 0 (i.e., $l_alpha = 0$ ). Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. This plot is related to plot_xy_NumGroup which requires a numeric grouping factor. When summary statistics (mean/median) are required, use plot_3d_scatterbar, plot_3d_scatterbox or plot_4d_scatterbox. #### Value This function returns a ggplot2 object of class "gg" and "ggplot". plot_xy_Group 95 ### **Examples** ``` #The grouping factor cyl is automatically converted to categorical variable plot_xy_CatGroup(data = mtcars, xcol = mpg, ycol = disp, CatGroup = cyl, ColPal = "vibrant", ColSeq = FALSE) #with boxplot plot_xy_CatGroup(data = mpg, xcol = cyl, ycol = cty, CatGroup = fl, Boxplot = TRUE) #add another variable #with boxplot plot_xy_CatGroup(data = mpg, xcol = cyl, ycol = cty, CatGroup = fl, facet = drv, Boxplot = TRUE) ``` plot_xy_Group Plot points on a quantitative X - Y plot & a grouping variable. # Description This function takes a data table, quantitative X and Y variables along with a grouping variable that is either categorical or numeric. The colour of data symbols is mapped to the grouping variable. This function is related to plot_xy_CatGroup and plot_xy_NumGroup, and could eventually replace them in future updates. Central value and scatter can be shown by choosing the ErrorType argument. Mean and error bars (SD, SEM or CI95) or box and whisker plot options are available. ### Usage ``` plot_xy_Group( data, xcol, ycol, Group, facet, ErrorType = c("none", "SD", "SEM", "CI95", "Boxplot"), SmoothType = c("none", "Loess", "Linear"), symsize = 3, s_alpha, TextXAngle = 0, mean_size, m_alpha = 1, LogYTrans, LogXTrans, ``` 96 plot_xy_Group ``` LogYBreaks = waiver(), LogXBreaks = waiver(), LogYLabels = waiver(), LogXLabels = waiver(), LogYLimits = NULL, LogXLimits = NULL, facet_scales = "fixed", fontsize = 20, bwid = 0.3, b_alpha = 0.3 l_alpha = 0.8, sm_alpha = 0.3, symthick, bthick, ewid = 0.1, e_{alpha} = 1, ColPal = NULL, ColSeq = TRUE, ColRev = FALSE, ) ``` #### **Arguments** | data A data frame containing the variables to be p | lotted. | |----------------------------------------------------|---------| |----------------------------------------------------|---------| xcol A column name in data for the x-axis (typically a factor or grouping variable). ycol A column name in data for the y-axis (numeric). Group A grouping variable used for colour/fill aesthetics. Whether this variable is nu- meric or not will determine colour palette choice for the ColPal argument. facet An optional variable for faceting the plot using facet_wrap(). ErrorType select the way to show data centrality and dispersion. The default is "none", which can be changed to "SD" (standard deviation), "SEM" (standard error of the mean) or "CI95" (95% confidence interval based on t distributions); all these will be displayed with a square symbol representing the mean. Choosing Boxplot will show a box and whiskers plot and the median. A line joining the central values will also appear. Use 1_alpha = 0 to not show the line. SmoothType Add a smoothened average using 'Loess' or 'Linear', which will be passed on to stat_smooth as method = "loess" or method = "lm", respectively. symsize Size of the raw data points. Default is 3. s_alpha Alpha transparency for raw data points. Default is 0.8, which will reduce to 0.2 when an ${\sf ErrorType}$ is set. TextXAngle Angle of x-axis text labels. Default is 0. mean_size Size of the square symbol representing the mean. Default is symsize + 3 to prominently show the central value. m_alpha Alpha transparency for the mean symbol. Default is 1. plot_xy_Group 97 transform Y axis into "log10" or "log2" (in quotes). LogYTrans LogXTrans transform X axis into "log10" or "log2" argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, LogYBreaks default is waiver(), or provide a vector of desired breaks. argument for ggplot2[scale_x_continuous] for Y axis breaks on log scales, LogXBreaks default is waiver(), or provide a vector of desired breaks. LogYLabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogXLabels argument for ggplot2[scale_x_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. LogXLimits a vector of length two specifying the range (minimum and maximum) of the X axis. whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), facet_scales free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. bwid width of boxplot (default = 0.3). fractional opacity of boxes (default = 0.3). b_alpha l_alpha fractional opacity of lines joining boxes, (default = 0.8). sm_alpha fractional opacity of error range around loess or linear smooth fit (default = 0.3). symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. bthick size (in 'pt' units) of outline of boxes, whisker and joining lines (stroke), default = fontsize/22. ewid width of errorbars (default = 0.1). e_alpha fractional opacity of error bars (default = 1). ColPal Character. Name of the colour palette to use from grafify. For categorical variables, one of: "okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant". For quantitative variables, one of: blue_conti, yellow_conti, grey_conti, PrGn_div, PrGn_div. logical TRUE or FALSE. Default TRUE for sequential colours from chosen ColSeq palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). Additional arguments passed to ggplot2 geoms or scales. #### **Details** When ErrorType is set to a value other than none, a line joining the central value (mean or median, respectively) will also appear (set l_alpha = 0 if this is not desired). Other options for ErrorType are: SD, SEM, CI95, Boxplot. 98 plot_xy_NumGroup When SD/SEM/CI95 are chosen, the mean value will appear as a larger square symbol. Its opacity and size can be adjusted with m_alpha and mean_size, respectively. The smooth fitted line type can be shown with the SmoothType argument, which can take the following options: none, Linear or Loess. Latter two options are fitted using stat_smooth with 1m or loess options, respectively. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette. #### Value This function
returns a ggplot2 object of class "gg" and "ggplot". #### **Examples** ``` #The grouping factor cyl is automatically converted to categorical variable plot_xy_Group(data = mpg, xcol = cyl, ycol = cty, Group = drv, ErrorType = "SD") #with a Linear smooth line plot_xy_Group(data = mpg, xcol = cyl, ycol = cty, Group = drv, ErrorType = "SD", SmoothType = "Linear") ``` plot_xy_NumGroup *Plot points on a quantitative X - Y plot & a numeric grouping variable.* ## Description This function takes a data table, quantitative X and Y variables, and a numeric grouping variable, and a and plots a graph with using <code>geom_point</code>. The numerical NumGroup variable is mapped to the fill aesthetic of symbols, which receives the <code>scale_fill_grafify</code> default quantitative palette (blue_conti). Alternatives are <code>yellow_conti</code>, <code>grey_conti</code>, <code>OrBl_div</code> and <code>PrGn_div</code>. Colour order can be reversed with <code>ColRev = TRUE</code> (default is <code>FALSE</code>). # Usage ``` plot_xy_NumGroup( data, xcol, ycol, NumGroup, facet, ``` plot_xy_NumGroup 99 ``` Boxplot = FALSE, symsize = 3, s_alpha = 0.8, TextXAngle = 0, LogYTrans, LogXTrans, LogYBreaks = waiver(), LogXBreaks = waiver(), LogYLabels = waiver(), LogXLabels = waiver(), LogYLimits = NULL, LogXLimits = NULL, facet_scales = "fixed", fontsize = 20, bwid = 0.3, b_alpha = 0.3, 1_{alpha} = 0.8, symthick, bthick, ColPal = c("blue_conti", "yellow_conti", "grey_conti", "PrGn_div", "OrBl_div"), ColRev = FALSE, ) ``` # Arguments | data | a data table object, e.g. data.frame or tibble. | |------------|------------------------------------------------------------------------------------------------------------------------------| | xcol | name of the column (without quotes) with quantitative X variable. | | ycol | name of the column (without quotes) with quantitative Y variable. | | NumGroup | a numeric factor for fill aesthetic of data points. | | facet | add another variable (without quotes) from the data table to create faceted graphs using facet_wrap. | | Boxplot | logical TRUE/FALSE to plot box and whiskers plot (default = FALSE). | | symsize | size of symbols used by geom_point. Default set to 3. | | s_alpha | fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). | | TextXAngle | orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. | | LogYTrans | transform Y axis into "log10" or "log2" (in quotes). | | LogXTrans | transform X axis into "log10" or "log2" | | LogYBreaks | argument for scale_y_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogXBreaks | argument for scale_x_continuous for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. | | LogYLabels | argument for scale_y_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | 100 plot_xy_NumGroup | LogXLabels | argument for scale_x_continuous for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------| | LogYLimits | a vector of length two specifying the range (minimum and maximum) of the Y axis. | | LogXLimits | a vector of length two specifying the range (minimum and maximum) of the X axis. | | facet_scales | whether or not to fix scales on $X \& Y$ axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). | | fontsize | parameter of base_size of fonts in theme_classic, default set to size 20. | | bwid | width of boxplot (default = $0.3$ ). | | b_alpha | fractional opacity of boxes, (default = $0.3$ ). | | l_alpha | fractional opacity of lines joining boxes, (default = $0.8$ ). | | symthick | size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. | | bthick | size (in 'pt' units) of outline of boxes, whisker and joining lines (stroke), default = fontsize/22. | | ColPal | grafify colour palette to apply (in quotes), default "okabe_ito"; see graf_palettes for available palettes. | | ColRev | whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). | | | any additional arguments to pass on. | # **Details** This plot is related to plot_xy_CatGroup which requires a categorical grouping factor. When summary statistics (mean/median) are required, use plot_3d_scatterbar, plot_3d_scatterbox or plot_4d_scatterbox. ## Value This function returns a ggplot2 object of class "gg" and "ggplot". # Examples ``` #The grouping factor gear is numeric plot_xy_NumGroup(data = mtcars, xcol = mpg, ycol = disp, NumGroup = cyl, s_alpha = 0.8) #change colour palette plot_xy_NumGroup(data = mtcars, xcol = mpg, ycol = disp, NumGroup = cyl, s_alpha = 0.8, ColPal = "grey_conti") ``` posthoc_Levelwise 101 | posthoc_Levelwise | Level-wise post-hoc comparisons from a linear or linear mixed effects model. | |-------------------|------------------------------------------------------------------------------| |-------------------|------------------------------------------------------------------------------| ### **Description** This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table. ### Usage ``` posthoc_Levelwise(Model, Fixed_Factor, P_Adj = "fdr", Factor, ...) ``` #### Arguments | Model | a model object fit using simple_model or mixed_model or related. | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fixed_Factor | one or more categorical variables, provided as a vector (e.g., c("A", "B")), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A B (note the vertical between the two Fixed_Factor) to emmeans to produce comparisons between each level A with each other listed separately at each level of B. | | P_Adj | method for correcting P values for multiple comparisons. Default is set to false discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak" (in quotes). See Interaction analysis in emmeans in the manual for emmeans. | | Factor | old argument name for Fixed_Factor; retained for backward compatibility. | | • • • | additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans. | #### **Details** The function will generate level-wise comparisons (as described in Comparisons and contrasts in emmeans), i.e. comparison between of every level of one factor separately at each level of the other factor. By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and not the original data table. The second part has the results of the comparisons (\$contrasts). ### Value returns an "emm_list" object containing contrasts and emmeans through emmeans. 102 posthoc_Pairwise ### **Examples** ``` #make a linear model first CholMod <- mixed_model(data = data_cholesterol, Y_value = "Cholesterol", Fixed_Factor = c("Hospital", "Treatment"), Random_Factor = "Subject") #note Fixed_Factor needs a vector or variable in quotes #to get comparisons between different hospitals separately for each level of Treatment posthoc_Levelwise(Model = CholMod, Fixed_Factor = c("Hospital", "Treatment")) #get comparisons between treatments separately at each hospital posthoc_Levelwise(Model = CholMod, Fixed_Factor = c("Treatment", "Hospital"))</pre> ``` posthoc_Pairwise Pairwise post-hoc comparisons from a linear or linear mixed effects model. # Description This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table. ### Usage ``` posthoc_Pairwise(Model, Fixed_Factor, P_Adj = "fdr", Factor, ...) ``` # Arguments | Model | a model object fit using simple_model or mixed_model or related. | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fixed_Factor | one or more categorical variables, provided as a vector (e.g., $c("A", "B")$ ), whose levels
you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = $c("A", "B")$ , this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons. | | P_Adj | method for correcting P values for multiple comparisons. Default is set to false discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak" (in quotes). See Interaction analysis in emmeans in the manual for emmeans. | | Factor | old argument name for Fixed_Factor; retained for backward compatibility. | | • • • | additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans. | #### **Details** The function will generate pairwise comparisons of every level of every factor (as described in Comparisons and contrasts in emmeans). Too many comparisons will be generated and only use this when necessary. By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and not the original data table. The second part has the results of the comparisons (\$contrasts). #### Value returns an "emm_list" object containing contrasts and emmeans through emmeans. ### **Examples** ``` #make linear models first DoublMod <- simple_model(data = data_doubling_time,</pre> Y_value = "Doubling_time", Fixed_Factor = "Student") #mixed model CholMod <- mixed_model(data = data_cholesterol,</pre> Y_value = "Cholesterol", Fixed_Factor = c("Hospital", "Treatment"), Random_Factor = "Subject") posthoc_Pairwise(Model = DoublMod, Fixed_Factor = "Student") #basic use with two Fixed_Factor provided as a vector posthoc_Pairwise(Model = CholMod, Fixed_Factor = c("Treatment", "Hospital")) #same call with "tukey" adjustment posthoc_Pairwise(Model = CholMod, Fixed_Factor = c("Treatment", "Hospital"), P_adj = "tukey") ``` posthoc_Trends_Levelwise Use emtrends to get level-wise comparison of slopes from a linear model. ### **Description** This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table. ## Usage ``` posthoc_Trends_Levelwise( Model, Fixed_Factor, Trend_Factor, P_Adj = "sidak", ... ) ``` ## **Arguments** | Model | a model object fit using simple_model or mixed_model (or lm or lmer). | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fixed_Factor | one or more categorical variables, provided as a vector (e.g., $c("A", "B")$ ), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = $c("A", "B")$ , this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons. | | Trend_Factor | a quantitative variable that interacts with a factor and whose slope (trend) is to be compared | | P_Adj | method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans. | | • • • | additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans. | ### **Details** Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of the other factor. ## Value returns an "emm_list" object containing slopes and their contrasts calculated through emtrends. # **Examples** ``` #create an lm model #Time2 is numeric (time points) ``` ``` m1 <- simple_model(data = data_2w_Tdeath, Y_value = "PI", Fixed_Factor = c("Genotype", "Time2")) posthoc_Trends_Levelwise(Model = m1, Fixed_Factor = "Genotype", Trend_Factor = "Time2")</pre> ``` posthoc_Trends_Pairwise Use emtrends to get pairwise comparison of slopes from a linear model. ## **Description** This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table. ## Usage ``` posthoc_Trends_Pairwise( Model, Fixed_Factor, Trend_Factor, P_Adj = "sidak", ... ) ``` ### **Arguments** | Model | a model object fit using simple_model or mixed_model (or lm or lmer). | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fixed_Factor | one or more categorical variables, provided as a vector (e.g., $c("A", "B")$ ), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = $c("A", "B")$ , this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons. | | Trend_Factor | a quantitative variable that interacts with a factor and whose slope (trend) is to be compared | | P_Adj | method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans. | | | additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans. | #### **Details** Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of the other factor. #### Value returns an "emm list" object containing slopes and their contrasts calculated through emtrends. ### **Examples** ``` #create an lm model #Time2 is numeric (time points) m1 <- simple_model(data = data_2w_Tdeath, Y_value = "PI", Fixed_Factor = c("Genotype", "Time2")) posthoc_Trends_Pairwise(Model = m1, Fixed_Factor = "Genotype", Trend_Factor = "Time2")</pre> ``` ### Description This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table. ## Usage ``` posthoc_Trends_vsRef( Model, Fixed_Factor, Trend_Factor, Ref_Level = 1, P_Adj = "sidak", ... ) ``` ### **Arguments** | Model | a model object fit using simple_model or mixed_model (or lm or lmer). | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fixed_Factor | one or more categorical variables, provided as a vector (e.g., $c("A", "B")$ ), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = $c("A", "B")$ , this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons. | | Trend_Factor | a quantitative variable that interacts with a factor and whose slope (trend) is to be compared | | Ref_Level | the level within that factor to be considered the reference or control to compare other levels to (to be provided as a number - by default R orders levels alphabetically); default Ref_Level = 1. | | P_Adj | method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans. | | | additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans. | ## **Details** Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of
the other factor. # Value returns an "emm_list" object containing slopes and their contrasts calculated through emtrends. ## **Examples** ``` #create an lm model #Time2 is numeric (time points) m1 <- simple_model(data = data_2w_Tdeath, Y_value = "PI", Fixed_Factor = c("Genotype", "Time2")) posthoc_Trends_vsRef(Model = m1, Fixed_Factor = "Genotype", Trend_Factor = "Time2", Ref_Level = 2)</pre> ``` 108 posthoc_vsRef posthoc_vsRef Post-hoc comparisons to a control or reference group. ### **Description** This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table. #### Usage ``` posthoc_vsRef(Model, Fixed_Factor, Ref_Level = 1, P_Adj = "fdr", Factor, ...) ``` ## **Arguments** Model a model object fit using simple_model or mixed_model or related. Fixed_Factor one or more categorical variables, provided as a vector (e.g., c("A", "B")), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A|B (note the vertical|between the two Fixed_Factor) to emmeans. The specification internally is set to specs = trt.vs.ctrl, Ref_Level = 1 to compare each group in A to the reference first group in A, separately at each level of В. Ref_Level the level within that factor to be considered the reference or control to compare other levels to (to be provided as a number - by default R orders levels alphabet- ically); default Ref_Level = 1. P_Adj method for correcting P values for multiple comparisons. Default is set to false discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak" (in quotes). See Interaction analysis in emmeans in the manual for emmeans. Factor old argument name for Fixed_Factor; retained for backward compatibility. .. additional arguments for emmeans such as lmer.df or others. See help for so- phisticated models in emmeans. # Details The function will generate treatment vs control type of comparisons (as described in Comparisons and contrasts in emmeans), i.e. comparison of each level of a factor to a reference level, which is set by default to the first level in the factor (Ref_Level = 1). By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and **not** the original data table. The second part has the results of the comparisons (\$contrasts). scale_colour_grafify 109 #### Value returns an "emm_list" object containing contrasts and emmeans through emmeans. #### **Examples** ``` #make linear models first DoublMod <- simple_model(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student") CholMod <- mixed_model(data = data_cholesterol, Y_value = "Cholesterol", Fixed_Factor = c("Hospital", "Treatment"), Random_Factor = "Subject") #to compare all students with student #9 posthoc_vsRef(Model = DoublMod, Fixed_Factor = "Student", Ref_Level = 9) #for comparison between hospital_a to every other hospital, separately at levels of Treatment posthoc_vsRef(Model = CholMod, Fixed_Factor = c("Hospital", "Treatment"), Ref_Level = 1)</pre> ``` ``` scale_colour_grafify scale_colour_ and scale_fill_functions ``` ## Description These let you apply grafify discrete or continuous palettes as fill or colour aesthetics to any ggplot2 (scale_color_ spelling is also accepted). #### Usage ``` scale_colour_grafify( palette = "okabe_ito", ColSeq = TRUE, reverse = FALSE, discrete = TRUE, ... ) scale_color_grafify( palette = "okabe_ito", ColSeq = TRUE, reverse = FALSE, discrete = TRUE, ... ) ``` 110 scale_colour_grafify ## Arguments palette Name of the grafify palettes from above, provide within quotes, e.g., palette = "vibrant". Default discrete palette is okabe_ito. For quantitative palette, set discrete = FALSE (which will apply blue_conti unless another palette is chosen). ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours. reverse Whether the colour order should be reversed. discrete not used. ... Additional parameters for scale_fill or scale_colour. ## **Details** The default is palette = "okabe_ito". The discrete argument is not used at present. The following discrete and quantitative palettes can be used. Categorical/discreet palettes: - okabe_ito (default) - bright - contrast - dark - kelly - light - muted - pale - r4 - safe - vibrant By default, sequential colours from above palettes will be chosen. To choose the most distant colours set ColSeq = TRUE. Sequential quantitative palettes: - grey_conti - blue_conti - yellow_conti Divergent quantitative palettes: - OrBl_div - PrGn_div #### Value ggplot scale_fill function for discrete colours. scale_fill_grafify 111 #### **Examples** ``` #add a grafify fill scheme to ggplot ggplot(emmeans::neuralgia, aes(x = Treatment, v = Duration))+ geom_boxplot(aes(fill = Treatment), alpha = .6)+ geom_point(aes(colour = Treatment, shape = Treatment), size = 3)+ scale_fill_grafify(palette = "bright")+ scale_colour_grafify(palette = "bright")+ facet_wrap("Sex")+ theme_classic() #distant colours `ColSeq = FALSE` ggplot(emmeans::neuralgia, aes(x = Treatment, y = Duration))+ geom_boxplot(aes(fill = Treatment), alpha = .6)+ geom_point(aes(colour = Treatment, shape = Treatment), size = 3)+ scale_fill_grafify(palette = "bright", ColSeq = FALSE)+ scale_colour_grafify(palette = "bright", ColSeq = FALSE)+ facet_wrap("Sex")+ theme_classic() #quantitative colour scheme ggplot(mtcars, aes(x = disp, y = mpg))+ geom_point(aes(colour = cyl), size = 3)+ scale_colour_grafify(palette = "blue_conti") ``` ``` scale_fill_grafify scale_colour_ and scale_fill_functions ``` ## **Description** These let you apply grafify discrete or continuous palettes as fill or colour aesthetics to any ggplot2 (scale_color_ spelling is also accepted). ## Usage ``` scale_fill_grafify( palette = "okabe_ito", ColSeq = TRUE, reverse = FALSE, discrete = TRUE, ``` 112 scale_fill_grafify ) ## Arguments palette Name of the grafify palettes from above, provide within quotes, e.g., palette = "vibrant". Default discrete palette is okabe_ito. For quantitative palette, set discrete = FALSE (which will apply blue_conti unless another palette is chosen). ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours. reverse Whether the colour order should be reversed. discrete not used. .. Additional parameters for scale_fill or scale_colour. #### **Details** The default is palette = "okabe_ito". The discrete argument is not used at present. The following discrete and quantitative palettes can be used. Categorical/discreet palettes: - okabe_ito (default) - bright - contrast - dark - kelly - light - muted - pale - r4 - safe - vibrant By default, sequential colours from above palettes will be chosen. To choose the most distant colours set ColSeq = TRUE. Sequential quantitative palettes: - grey_conti - blue_conti - yellow_conti Divergent quantitative palettes: - OrBl_div - PrGn_div simple_anova 113 #### Value ggplot scale_fill function for discrete colours. #### **Examples** ``` #add a grafify fill scheme to ggplot ggplot(emmeans::neuralgia, aes(x = Treatment, y = Duration))+ geom_boxplot(aes(fill = Treatment), alpha = .6)+ geom_point(aes(colour = Treatment, shape = Treatment), size = 3)+ scale_fill_grafify(palette = "bright")+ scale_colour_grafify(palette = "bright")+ facet_wrap("Sex")+ theme_classic() #distant colours `ColSeq = FALSE` ggplot(emmeans::neuralgia, aes(x = Treatment, y = Duration))+ geom_boxplot(aes(fill = Treatment), alpha = .6)+ geom_point(aes(colour = Treatment, shape = Treatment), size = 3)+ scale_fill_grafify(palette = "bright", ColSeq = FALSE)+ scale_colour_grafify(palette = "bright", ColSeq = FALSE)+ facet_wrap("Sex")+ theme_classic() #quantitative colour schemes ggplot(mtcars, aes(x = disp, y = mpg))+ geom_point(aes(colour = cyl), size = 3)+ scale_colour_grafify(palette = "blue_conti") ``` $simple_anova$ ANOVA table from a linear model fit to data. ## **Description** One of two functions for simple ANOVA tables and linear models without random effects, which use 1m to fit a linear models. ``` 1. link{simple_anova} ``` 2. link{simple_model} 114 simple_anova #### Usage ``` simple_anova(data, Y_value, Fixed_Factor, ...) ``` #### **Arguments** data a data table object, e.g. data.frame or tibble. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". The following transformations are permitted: "log(Y_value)", "log(Y_value + c)" where c a positive number, "logit(Y_value)" or "logit(Y_value/100)" which may be useful when Y_value are percentages (note quotes outside the log or logit calls); "sqrt(Y_value)" or "(Y_value)^2" should also work. During posthoccomparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., "sqrt(Y_value)" will not be back-transformed. Check out the regrid and ref_grid for details if you need back-transformation to the response scale. Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). If a numeric variable(s) is used,
transformations similar to Y_value are permitted. ... any additional argument to pass on to 1m if required. #### **Details** Update in v0.2.1: This function uses 1m to fit a linear model to data, passes it on to Anova, and outputs the ANOVA table with type II sum of squares with F statistics and P values. (Previous versions produced type I sum of squares using anova call.) It requires a data table, one quantitative dependent variable and one or more independent variables. If your experiment design has random factors, use the related function mixed_anova. This function is related to link{simple_model}. #### Value ANOVA table of class "anova" and "data.frame". ``` #Basic usage simple_anova(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student") ``` simple_model 115 simple_model Model from a linear model fit to data. ## **Description** One of two functions for simple ANOVA tables and linear models without random effects, which use 1m to fit a linear models. ``` 1. link{simple_anova} ``` 2. link{simple_model} ## Usage ``` simple_model(data, Y_value, Fixed_Factor, ...) ``` #### Arguments data a data table object, e.g. data.frame or tibble. Y_value name of column containing quantitative (dependent) variable, provided within "quotes". The following transformations are permitted: "log(Y_value)", "log(Y_value + c)" where c a positive number, "logit(Y_value)" or "logit(Y_value/100)" which may be useful when Y_value are percentages (note quotes outside the log or logit calls); "sqrt(Y_value)" or "(Y_value)^2" should also work. During posthoccomparisons, log and logit transformations will be back-transformed to the original scale. Other transformations, e.g., "sqrt(Y_value)" will not be back-transformed. Check out the regrid and ref_grid for details if you need back-transformation to the response scale. Fixed_Factor name(s) of categorical fixed factors (independent variables) provided within quotes (e.g., "A") or as a vector if more than one (e.g., c("A", "B"). If a numeric variable(s) is used, transformations similar to Y_value are permitted. ... any additional arguments to pass on to 1m if required. #### **Details** Update in v0.2.1: This function uses 1m to fit a linear model to data, passes it on to Anova, and outputs the ANOVA table with type II sum of squares with F statistics and P values. (Previous versions produced type I sum of squares using anova call.) It requires a data table, one quantitative dependent variable and one or more independent variables. The model output can be used to extract coefficients and other information, including post-hoc comparisons. If your experiment design has random factors, use the related function mixed_model. This function is related to link{simple_anova}. Output of this function can be used with posthoc_Pairwise, posthoc_Levelwise and posthoc_vsRef, or with emmeans. #### Value This function returns an object of class "lm". 116 table_summary #### **Examples** ``` #fixed factors provided as a vector Doubmodel <- simple_model(data = data_doubling_time, Y_value = "Doubling_time", Fixed_Factor = "Student") #get summary summary(Doubmodel)</pre> ``` table_summary Get numeric summary grouped by factors #### **Description** This is a wrapper around aggregate function in base R to obtain mean, median, standard deviation and count for quantitative variable(s) grouped by one or more factors. More than one column containing of quantitative variables can be passed on, and summaries for each is provided with column names with a ... #### Usage ``` table_summary(data, Ycol, ByGroup) ``` ## **Arguments** data name of the data table. Ycol name of one column (in quotes) or a vector of column names (e.g., c("Y1", "Y2")) containing the numerical variable to be summarised. ByGroup name of one column (in quotes) or a vector of column names (e.g., c("A", "B")) containing the grouping factors ## Value this function takes in a data.frame or tibble and returns a data.frame or tibble. ``` table_summary(Ycol = "cty", ByGroup = c("fl", "drv"), data = mpg) ``` table_x_reorder 117 | table_x_reorder Reordering groups along X-axis | |------------------------------------------------| |------------------------------------------------| ## **Description** This simple function takes in a data table and reorders groups (categorical variables or factors) to be plotted along the X-axis in a user-defined order. ## Usage ``` table_x_reorder(data, xcol, OrderX, ...) ``` ## **Arguments** | data | a data table or tibble. | |--------|--------------------------------------------------------------------------------------------------------------| | xcol | name of column in above data table (in quotes), e.g., "A", whose levels are to be reordered. | | OrderX | a vector of group names within the column selected in xcol in the desired order, .e.g., $c("D", "A", "C")$ . | | | any additional arguments for factor call. | ## **Details** It uses two base R functions: as.factor to first force the user-selected column into a factor, and factor that reorders levels based on a user-provided vector. #### Value This function returns a data frame with a selected column converted into factor with reordered levels. ``` #reorder levels within Genotype new_data <- table_x_reorder(data_t_pratio, xcol = "Genotype", OrderX = c("KO", "WT")) #compare plot_scatterbox(data_t_pratio, Genotype, Cytokine) #with plot_scatterbox(new_data, Genotype, Cytokine) #also works within the plot call plot_scatterbox(data = table_x_reorder(data_t_pratio, xcol = "Genotype",</pre> ``` 118 theme_grafify ``` OrderX = c("KO", "WT")), xcol = Genotype, ycol = Cytokine) ``` theme_grafify A modified theme_classic() for grafify-like graphs. #### **Description** This is a slightly modified theme_classic with two key differences: no border & background for facet panel labels, and font size of text on axes is the same as that of the axes titles (prior to v3.2.0, this was 0.85 times the base font size). The size of text legend title is also same as base font. ### Usage ``` theme_grafify( base_size = 20, base_family = "", base_line_size = base_size/22, base_rect_size = base_size/22, TextXAngle = 0, vjust = 0, hjust = 0, ... ) ``` #### **Arguments** base_size base font size for all text (default is 20). Other text is relative to this. base_family default font family base_line_size default line size (default is base font size/22) base_rect_size default size of rectangles (default is base font size/22) TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. vertical adjustment of X-axis text alignment (between 0 and 1). Set hjust and vjust vjust to 1 if TextXAngle = 45. Try other options if using other angles. hjust horizontal adjustment of X-axis text alignment (between 0 and 1). Set hjust and vjust to 1 if TextXAngle = 45. Try other options if using other angles. for any other arguments to pass to theme. A useful one is aspect.ratio = 1 for square plots. ## **Details** Since v3.2.0, theme_grafify produces transparent backgrounds. theme_grafify 119 ## Value this returns an output with class "theme" and "gg". ``` ggplot(mpg, aes(drv, cty, colour = fl))+ geom_jitter(width = 0.2, size = 3, alpha = .7)+ theme_grafify() ``` # **Index** | * datasets data_1w_death, 3 | geom_boxplot, 30, 32, 35, 38, 41, 44, 47, 50, 66, 69, 88, 91 geom_density, 60, 61 | |-------------------------------------------------|-----------------------------------------------------------------------------------| | data_2w_Festing, 4 | | | data_2w_Tdeath, 4 | geom_dotplot, 62-69 | | data_cholesterol, 5 | geom_histogram, 72-74 | | data_doubling_time, 6 | geom_line, 52, 53, 55, 56, 58, 59 | | data_t_pdiff, 6 | geom_point, 41, 44, 53, 56, 59, 64, 66, 69, 77, | | data_t_pratio,7 | 84, 86, 89–93, 98, 99 | | data_zooplankton, 7 | geom_qq, 81, 82 | | graf_colours, 11 | geom_qq_line, 81, 82 | | <pre>graf_palettes, 13</pre> | geom_violin, 38, 50, 69, 91 | | | <pre>get_graf_colours, 10</pre> | | aggregate, 116 | <pre>graf_col_palette, 12</pre> | | Anova, <i>114</i> , <i>115</i> | <pre>graf_col_palette_default, 12</pre> | | anova, <i>114</i> , <i>115</i> | graf_colours, 11 | | appraise, 83 | graf_palettes, 13, 29, 32, 35, 38, 41, 44, 47, | | as_lmerModLmerTest, 19, 21, 23, 25 | 50, 53, 56, 59, 61, 64, 66, 69, 73, 79, | | | 81, 85, 88, 91, 94, 100 | | colorRampPalette, 12, 30, 33, 35, 38, 41, 44, | | | 47, 50, 53, 56, 59, 61, 64, 67, 69, 74, | lm, 104, 105, 107, 113–115 | | 79, 81, 86, 88, 91, 94, 98 | lmer, 19-26, 104, 105, 107 | | data_1w_death, 3 | make_1way_data, <i>14</i> , 14, <i>15</i> , <i>16</i> , <i>18</i> | | data_2w_Festing, 4 | make_1way_rb_data, <i>14</i> , <i>15</i> , 15, <i>16</i> , <i>18</i> | | data_2w_Tdeath, 4 | make_2way_data, <i>14–16</i> , 16, <i>18</i> | | data_cholesterol, 5 | make_2way_rb_data, 14–16, 18, 18 | | data_doubling_time, 6 | mixed_anova, 19, 22, 26, 114 | | data_t_pdiff, 6 | mixed_anova_slopes, 21 | | data_t_pratio, 7 | mixed_model, 22, 23, 26, 82, 101, 102, | | data_zooplankton, 7 | 104–108, 115 | | data_200p1ankton, / | mixed_model_slopes, 25, 82, 101, 102, | | emmeans, 20, 22, 24, 27, 101-109, 115 | 104–106, 108 | | emtrends, 104, 106, 107 | 104–100, 100 | | elliti ellus, 104, 100, 107 | plot_3d_point_sd, 27, 27, 30, 33, 36 | | facet_wrap, 28, 31, 34, 37, 40, 43, 46, 49, 52, | plot_3d_scatterbar, 27, 30, 30, 33, 36, 94, | | 53, 55, 58, 60, 63, 66, 68, 73, 78, 81, | 100 | | 85, 87, 90, 93, 99 | plot_3d_scatterbox, 27, 30, 33, 33, 36, 94, | | | 100 | | $ga_anova, 8, 8, 9$ | plot_3d_scatterviolin, 27, 30, 33, 36, 36 | | $ga_{model}, 8, 9, 9, 83$ | plot_4d_point_sd, 39, 39, 42, 45, 48 | | | | INDEX 121 | plot_4d_scatterbar, 39, 42, 42, 45, 48 | (scale_colour_grafify), 109 | |------------------------------------------------------------------------------------|------------------------------------------------| | plot_4d_scatterbox, 39, 42, 45, 45, 48, 94, | scale_colour_grafify, 109 | | 100 | scale_fill_grafify, 111 | |
plot_4d_scatterviolin, 39, 42, 45, 48, 48 | scale_x_continuous, 76, 99, 100 | | plot_befafter_box, <i>51</i> , <i>51</i> , <i>54</i> , <i>57</i> | scale_y_continuous, 29, 32, 34, 37, 40, 41, | | plot_befafter_colors, 51, 54, 57 | 43, 44, 46, 50, 52, 56, 58, 61, 63, 66, | | plot_befafter_colors | 69, 73, 76, 79, 85, 88, 90, 99 | | (plot_befafter_colours), 54 | simple_anova, 113 | | plot_befafter_colours, <i>51</i> , <i>53</i> , <i>54</i> , <i>54</i> , <i>56</i> , | simple_model, 82, 101, 102, 104-108, 115 | | 57, 59 | stat_qq, 80, 81 | | plot_befafter_shapes, <i>51</i> , <i>53</i> , <i>54</i> , <i>56</i> , <i>57</i> , | stat_qq_line, <i>80</i> , <i>81</i> | | 57, 59 | stat_smooth, 98 | | plot_density, 60, 72 | stat_summary, 41, 44, 79 | | plot_dotbar_sd, 62, 62, 65, 67 | <u> </u> | | plot_dotbox, 62, 65, 65, 67 | table_summary, 20, 22, 24, 26, 116 | | plot_dotviolin, 62, 65, 67, 67 | table_x_reorder, 117 | | plot_gam_predict, 70 | theme_classic, 29, 32, 34, 37, 41, 44, 47, 50, | | plot_grafify_palette, <i>61</i> , <i>64</i> , <i>67</i> , <i>69</i> , 71, | 53, 56, 58, 61, 63, 66, 69, 73, 79, 81, | | 74, 79, 81, 86, 88, 91, 94, 98 | 82, 85, 88, 91, 94, 97, 100, 118 | | plot_histogram, 60, 72, 80 | theme_grafify, 118 | | plot_lm_predict, 74 | | | plot_logscale, 76 | | | plot_point_sd, 77, 77, 79, 84, 86, 88, 89, 91 | | | plot_qq_gam, 83 | | | plot_qqline, 60, 72, 80, 80 | | | plot_qqmodel, 82 | | | plot_scatterbar_sd, 64, 66, 69, 72, 77, 79, | | | 84, 84, 86, 88, 89, 91 | | | plot_scatterbox, 64, 66, 69, 77, 84, 86, 86, | | | 89 | | | plot_scatterviolin, 64, 66, 69, 77, 84, 86, | | | 89, 89 | | | plot_xy_CatGroup, 71, 92, 95, 100 | | | plot_xy_Group, 95 | | | plot_xy_NumGroup, <i>94</i> , <i>95</i> , 98 | | | posthoc_Levelwise, 20, 22, 24, 27, 101, 115 | | | posthoc_Pairwise, 20, 22, 24, 27, 102, 115 | | | posthoc_Trends_Levelwise, 20, 22, 24, 27, | | | 103 | | | posthoc_Trends_Pairwise, 20, 22, 24, 27, | | | 105 | | | posthoc_Trends_vsRef, 20, 22, 24, 27, 106 | | | posthoc_vsRef, 20, 22, 24, 27, 108, 115 | | | | | | ref_grid, 19, 22, 24, 26, 114, 115 | | | regrid, 19, 22, 24, 26, 114, 115 | | | rstudent, 82 | | | | | | scale_color_grafify | |