Package ‘mvgam’

September 5, 2025

Title Multivariate (Dynamic) Generalized Additive Models
Version 1.1.593
Date 2025-09-03

Description Fit Bayesian Dynamic Generalized Additive Models to multivariate observa-
tions. Users can build nonlinear State-Space models that can incorporate semiparametric ef-
fects in observation and process components, using a wide range of observation families. Estima-
tion is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the soft-
ware 'Stan'. References: Clark & Wells (2023) <doi:10.1111/2041-210X.13974>.

URL https://github.com/nicholasjclark/mvgam,

https://nicholasjclark.github.io/mvgam/

BugReports https://github.com/nicholasjclark/mvgam/issues
License MIT + file LICENSE
Depends R (>=3.6.0)

Imports brms (>=2.21.0), methods, mgcv (>= 1.8-13), insight (>=
0.19.1), marginaleffects (>= 0.29.0), Rcpp (>= 0.12.0), rstan
(>=2.29.0), posterior (>= 1.0.0), loo (>= 2.3.1), rstantools
(>=2.1.1), bayesplot (>= 1.5.0), ggplot2 (>= 3.5.0), mvnfast,
purrr, dplyr, magrittr, rlang, generics, tibble (>= 3.0.0),
patchwork (>= 1.2.0)

Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

Suggests scoringRules, matrixStats, cmdstanr (>= 0.5.0), tweedie,
splines2, extraDistr, corpcor, wrswoR, ggrepel, ggpp, ggarrow,
xts, lubridate, knitr, collapse, rmarkdown, rjags, coda,
runjags, usethis, testthat, colorspace

Enhances gratia (>= 0.9.0), tidyr

Additional_repositories https://mc-stan.org/r-packages/
LinkingTo Rcpp, ReppArmadillo
VignetteBuilder knitr

https://doi.org/10.1111/2041-210X.13974
https://github.com/nicholasjclark/mvgam
https://nicholasjclark.github.io/mvgam/
https://github.com/nicholasjclark/mvgam/issues
https://mc-stan.org/r-packages/

2 Contents

NeedsCompilation yes

Author Nicholas J Clark [aut, cre] (ORCID:

<https://orcid.org/0000-0001-7131-3301>),

KANK Karunarathna [ctb] (ARMA parameterisations and factor models,
ORCID: <https://orcid.org/0000-0002-8995-5502>),

Sarah Heaps [ctb] (VARMA parameterisations, ORCID:
<https://orcid.org/0000-0002-5543-037X>),

Scott Pease [ctb] (broom enhancements, ORCID:
<https://orcid.org/0009-0006-8977-9285>),

Matthijs Hollanders [ctb] (ggplot visualizations, ORCID:
<https://orcid.org/0000-0003-0796-1018>)

Maintainer Nicholas J Clark <nicholas. j.clark1214@gmail.com>
Repository CRAN
Date/Publication 2025-09-05 16:30:02 UTC

Contents
add_residuals.mvgam 4
all_neon_tick data e 5
AUEMENt.MVEAM . . . o . v v o v v e e e e e e e e e e e e e e e e e e 5
code . . .o e e 7
conditional_effects.mvgam oL 8
dynamic 10
ensemble.mvgam_forecast oL 13
evaluate_mvgams e e e e e e e e e 15
fevd.mvgam L e 19
fittedmvgam e e 21
forecastmvgam L. 23
formulamvgam 25
CEL_MVZAM_PIIOTS .+ . v v v v v e e e e e e e e e e e e e e e e e e 26
GP . . e 32
gratia_mvgam_enhancements 34
hindcastmvgam L 39
how_to_citemvgam 40
INdeX-mvgam e e e 42
irfomvgam e e e e e 43
jsdgamo e e e e 45
Ifo_cvmvgamo 55
logLikomvgam e 58
loomvgam e e e 59
Iv_correlations e e 62
meme_plot.mvgam L. e e e e e e e e 63
model.frame.mvgam L e e 64
100 10) 1 0] 1073 [65
MVEZAM . . o v vt e 68

mvgam-class e e 84

https://orcid.org/0000-0001-7131-3301
https://orcid.org/0000-0002-8995-5502
https://orcid.org/0000-0002-5543-037X
https://orcid.org/0009-0006-8977-9285
https://orcid.org/0000-0003-0796-1018

Contents

3
mvgam_diagnostics e e e e e e e e e e 86
mvgam_draws e e e e e e 87
mvgam_families 90
mvgam_fevd-class 95
mvgam_forecast-class. L. 96
mvgam_formulaeo Lo 97
mvgam_irf-classo 98
mvgam_marginaleffects L 99
mvgam_residcor-class L. L e 103
mvgam_trendS e e 104
MVZAM_USE_CASES . . .+« ¢ ¢ e v v e v e e e et e e e e e e e e e e 105
ordinate.jsdgam e e e e 107
PALSIMVEAM .« « o v v v v v vt e et e e e e e e e e e e e e e e e 109
plotmvgam 110
plotmvgam_fevd L 113
plotmvgam_irf 113
plotmvgam_Ifo 114
plotmvgam_residcor e e e e e e 115
plot_mvgam_factors e 116
plot_mvgam_forecasts 117
plot_mvgam_ptermso e e e e 120
plot_mvgam_randomeffects L 121
plot_mvgam_resids e e 121
plot_mvgam_series e e e 123
plot_mvgam_smooth e e 124
plot_mvgam_trend 126
plot_mvgam_uncertainty e 128
portal_data 129
posterior_epred.mvgam L. e e e e e e e 130
posterior_linpred.mvgam 132
posterior_predict.mv@am e 134
PPCMVEAM . . . o v v vt e 136
pp_checkmvgam L 138
predicttmvgam L e e e 141
PrNEMVEZAM o o oot e e e e e e e 144
Print.mvgam_SUMMATY ¢ . v v v v v et e e e e e e e e e e e e e e 145
PW e 145
residuals.mvgam 148
residual_corjsdgam e e 149
RW e 152
score.mvgam_forecast L. 156
SEES_tO_MVEAM v v v vttt e e e e e e e e e e 158
SIM_MVEAM .« . . v v v v vt v e 159
stabilitymvgam oL e e 162
SUMMATY.MVEAM « . . o v v e e et e e e e e e e e e e e e e e e e e 165
summary.mvgam_fevd L e 167
summary.mvgam_forecast L oL 168

summary.mvgam_irf oL 169

4 add_residuals.mvgam

tdy.mvgam e e e e e e e e e e e 170
update.mv@am e e e e e e e e e e e e e 171
ZMVN . 177
Index 180

add_residuals.mvgam Calculate randomized quantile residuals for mvgam objects

Description

Calculate randomized quantile residuals for mvgam objects

Usage
add_residuals(object, ...)

S3 method for class 'mvgam'

add_residuals(object, ...)
Arguments
object list object of class mvgam. See mvgam()
unused
Details

For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for inspecting
model diagnostics If the fitted model is appropriate then Dunn-Smyth residuals will be standard
normal in distribution and no autocorrelation will be evident. When a particular observation is
missing, the residual is calculated by comparing independent draws from the model’s posterior
distribution

Value

A list object of class mvgam with residuals included in the 'resids’ slot

all neon_tick_data 5

all_neon_tick_data NEON Amblyomma and Ixodes tick abundance survey data

Description
A dataset containing timeseries of Amblyomma americanum and Ixodes scapularis nymph abun-
dances at NEON sites

Usage

all_neon_tick_data

Format
A tibble/dataframe containing covariate information alongside the main fields of:

Year Year of sampling

epiWeek Epidemiological week of sampling

plot_ID NEON plot ID for survey location

sitelD NEON site ID for survey location
amblyomma_americanum Counts of A. americanum nymphs
ixodes_scapularis Counts of 1. scapularis nymphs

Source

https://www.neonscience.org/data

augment.mvgam Augment an mvgam object’s data

Description

Add fits and residuals to the data, implementing the generic augment from the package broom.

Usage
S3 method for class 'mvgam'
augment(x, robust = FALSE, probs = c(0.025, 0.975), ...)
Arguments
X An object of class mvgam.
robust If FALSE (the default) the mean is used as the measure of central tendency and

the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.

probs The percentiles to be computed by the quantile function.

Unused, included for generic consistency only.

https://www.neonscience.org/data

6 augment.mvgam

Details

A list is returned if class(x$obs_data) == 'list', otherwise a tibble is returned, but the
contents of either object is the same.

The arguments robust and probs are applied to both the fit and residuals calls (see fitted.mvgam()
and residuals.mvgam() for details).

Value
A list or tibble (see details) combining:
* The data supplied to mvgam().
¢ The outcome variable, named as .observed.

* The fitted backcasts, along with their variability and credible bounds.

* The residuals, along with their variability and credible bounds.

See Also

residuals.mvgam, fitted.mvgam

Other tidiers: tidy.mvgam()

Examples

set.seed(0)
dat <- sim_mvgam(

T = 80,
n_series = 3,
mu = 2,

trend_model = AR(p = 1),
prop_missing = 0.1,
prop_trend = 0.6

)

mod1 <- mvgam(
formula = y ~ s(season, bs = 'cc', k = 6),
data = dat$data_train,
trend_model = AR(),
family = poisson(),
noncentred = TRUE,
chains = 2,
silent = 2

)

augment(mod1, robust = TRUE, probs = c(0.25, 0.75))

code 7

code Stan code and data objects for mvgam models

Description

Generate Stan code and data objects for mvgam models

Usage

code(object)

S3 method for class 'mvgam_prefit'
stancode(object, ...)

S3 method for class 'mvgam'
stancode(object, ...)

S3 method for class 'mvgam_prefit'

standata(object, ...)
Arguments
object An object of class mvgam or mvgam_prefit, returned from a call to mvgam
ignored
Value

Either a character string containing the fully commented Stan code to fit a mvgam model or a
named list containing the data objects needed to fit the model in Stan.

Examples

simdat <- sim_mvgam()
mod <- mvgam(y ~ s(season) +
s(time, by = series),
family = poisson(),
data = simdat$data_train,
run_model = FALSE)

View Stan model code
stancode (mod)

View Stan model data
sdata <- standata(mod)
str(sdata)

conditional_effects.mvgam

conditional_effects.mvgam

Display conditional effects of predictors for mvgam models

Description

Display conditional effects of one or more numeric and/or categorical predictors in models of class
mvgam and jsdgam, including two-way interaction effects.

Usage

S3 method for class 'mvgam'
conditional_effects(

X,

effects = NULL,
type = "expected”,
points = FALSE,

rug = FALSE,

S3 method for class 'mvgam_conditional_effects'
plot(x, plot = TRUE, ask = FALSE, ...)

S3 method for class 'mvgam_conditional_effects'

print(x, ...)

Arguments

X

effects

type

Object of class mvgam, jsdgam or mvgam_conditional_effects

An optional character vector naming effects (main effects or interactions) for
which to compute conditional plots. Interactions are specified by a : between
variable names. If NULL (the default), plots are generated for all main effects and
two-way interactions estimated in the model. When specifying effects man-
ually, all two-way interactions (including grouping variables) may be plotted
even if not originally modeled.

character specifying the scale of predictions. When this has the value 1ink
the linear predictor is calculated on the link scale. If expected is used (the de-
fault), predictions reflect the expectation of the response (the mean) but ignore
uncertainty in the observation process. When response is used, the predictions
take uncertainty in the observation process into account to return predictions on
the outcome scale. Two special cases are also allowed: type latent_N will re-
turn the estimated latent abundances from an N-mixture distribution, while type
detection will return the estimated detection probability from an N-mixture
distribution.

conditional_effects.mvgam 9

points Logical. Indicates if the original data points should be added, but only if type
== 'response'. Default is TRUE.

rug Logical. Indicates if displays tick marks should be plotted on the axes to mark
the distribution of raw data, but only if type == 'response’. Default is TRUE.

other arguments to pass to plot_predictions

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

ask Logical. Indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE. Default is FALSE.

Details

This function acts as a wrapper to the more flexible plot_predictions. When creating conditional_effects
for a particular predictor (or interaction of two predictors), one has to choose the values of all other

predictors to condition on. By default, the mean is used for continuous variables and the reference

category is used for factors. Use plot_predictions to change these and create more bespoke
conditional effects plots.

Value

conditional_effects returns an object of class mvgam_conditional_effects which is a named
list with one slot per effect containing a ggplot object, which can be further customized using
the ggplot2 package. The corresponding plot method will draw these plots in the active graphic
device.

Author(s)
Nicholas J Clark

See Also

plot_predictions, plot_slopes

Examples

Simulate some data

simdat <- sim_mvgam(
family = poisson(),
seasonality = 'hierarchical'’

)

Fit a model
mod <- mvgam(
y ~ s(season, by = series, k = 5) + year:series,
family = poisson(),
data = simdat$data_train,
chains = 2,
silent = 2

dynamic

Plot all main effects on the response scale
conditional_effects(mod)

Change the prediction interval to 70% using plot_predictions() argument
'conf_level'
conditional_effects(mod, conf_level = 0.7)

Plot all main effects on the link scale
conditional_effects(mod, type = 'link')

Works the same for smooth terms, including smooth interactions
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(
y ~ te(xQ, x1, k =5) + s(x2, k =6) + s(x3, k =6),

data = dat,
family = gaussian(),
chains = 2,
silent = 2

)
conditional_effects(mod)
conditional_effects(mod, conf_level = 0.5, type = 'link")

ggplot objects can be modified and combined with the help of many
additional packages. Here is an example using the patchwork package

Simulate some nonlinear data
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(

y ~ s(x1, bs = 'moi') + te(x0, x2),

data = dat,
family = gaussian(),
chains = 2,
silent = 2

Extract the list of ggplot conditional_effect plots
m <- plot(conditional_effects(mod), plot = FALSE)

Add custom labels and arrange plots together using patchwork: :wrap_plots()
library(patchwork)
library(ggplot2)
wrap_plots(
m[[1]] + labs(title 's(x1, bs = "moi")"),
m[[2]] + labs(title = 'te(x0, x2)"')
)

dynamic Defining dynamic coefficients in mvgam formulae

dynamic

Description

11

Set up time-varying (dynamic) coefficients for use in mvgam models. Currently, only low-rank
Gaussian Process smooths are available for estimating the dynamics of the time-varying coefficient.

Usage

dynamic(variable, k, rho = 5, stationary = TRUE, scale = TRUE)

Arguments

variable
k

rho

stationary

scale

Details

The variable that the dynamic smooth will be a function of

Optional number of basis functions for computing approximate GPs. If missing,
k will be set as large as possible to accurately estimate the nonlinear function.

Either a positive numeric stating the length scale to be used for approximating
the squared exponential Gaussian Process smooth (see gp . smooth for details) or
missing, in which case the length scale will be estimated by setting up a Hilbert
space approximate GP.

Logical. If TRUE (the default) and rho is supplied, the latent Gaussian Process
smooth will not have a linear trend component. If FALSE, a linear trend in the
covariate is added to the Gaussian Process smooth. Leave at TRUE if you do
not believe the coefficient is evolving with much trend, as the linear component
of the basis functions can be hard to penalize to zero. This sometimes causes
divergence issues in Stan. See gp.smooth for details. Ignored if rho is missing
(in which case a Hilbert space approximate GP is used).

Logical; If TRUE (the default) and rho is missing, predictors are scaled so that
the maximum Euclidean distance between two points is 1. This often improves
sampling speed and convergence. Scaling also affects the estimated length-scale
parameters in that they resemble those of scaled predictors (not of the original
predictors) if scale is TRUE.

mvgam currently sets up dynamic coefficients as low-rank squared exponential Gaussian Process
smooths via the call s(time, by = variable, bs ="gp", m=c(2, rho, 2)). These smooths, if
specified with reasonable values for the length scale parameter, will give more realistic out of sample
forecasts than standard splines such as thin plate or cubic. But the user must set the value for rho,
as there is currently no support for estimating this value in mgcv. This may not be too big of a
problem, as estimating latent length scales is often difficult anyway. The rho parameter should be
thought of as a prior on the smoothness of the latent dynamic coefficient function (where higher
values of rho lead to smoother functions with more temporal covariance structure). Values of k are
set automatically to ensure enough basis functions are used to approximate the expected wiggliness
of the underlying dynamic function (k will increase as rho decreases).

Value

a list object for internal usage in 'mvgam’

12 dynamic

Author(s)
Nicholas J Clark

Examples

Simulate a time-varying coefficient

(as a Gaussian Process with length scale = 10)
set.seed(1111)

N <- 200

A function to simulate from a squared exponential Gaussian Process
sim_gp <- function(N, c, alpha, rho) {
Sigma <- alpha * 2 *
exp(-0.5 * ((outer(1:N, 1:N, "-") / rho) * 2)) +
diag(1e-9, N)
c + mgev::rmvn(l, mu = rep(@, N), V = Sigma)

3

beta <- sim_gp(alpha = 0.75, rho = 10, ¢ = 0.5, N = N)
plot(

beta, type = '1', lwd = 3, bty = '1',

xlab = 'Time', ylab = 'Coefficient', col = 'darkred'

)

Simulate the predictor as a standard normal
predictor <- rnorm(N, sd = 1)

Simulate a Gaussian outcome variable
out <- rnorm(N, mean = 4 + beta * predictor, sd = 0.25)
time <- seqg_along(predictor)
plot(
out, type = 'l', lwd = 3, bty = '1",
xlab = 'Time', ylab = 'Outcome', col = 'darkred'

)

Gather into a data.frame and fit a dynamic coefficient model
data <- data.frame(out, predictor, time)

Split into training and testing
data_train <- data[1:190, 1]
data_test <- data[191:200,]

Fit a model using the dynamic function
mod <- mvgam(
out ~
mis-specify the length scale slightly as this
won't be known in practice
dynamic(predictor, rho = 8, stationary = TRUE),
family = gaussian(),
data = data_train,
chains = 2,
silent = 2

ensemble.mvgam_forecast 13

)

Inspect the summary
summary (mod)

Plot the time-varying coefficient estimates
plot(mod, type = 'smooths')

Extrapolate the coefficient forward in time
plot_mvgam_smooth(mod, smooth = 1, newdata = data)
abline(v = 190, 1ty = 'dashed', lwd = 2)

Overlay the true simulated time-varying coefficient
lines(beta, lwd = 2.5, col = 'white')
lines(beta, lwd = 2)

ensemble.mvgam_forecast
Combine forecasts from mvgam models into evenly weighted ensem-
bles

Description

Generate evenly weighted ensemble forecast distributions from mvgam_forecast objects.

Usage

ensemble(object, ...)

S3 method for class 'mvgam_forecast'

ensemble(object, ..., ndraws = 5000)
Arguments
object list object of class mvgam_forecast. See forecast.mvgam()

More mvgam_forecast objects.

ndraws Positive integer specifying the number of draws to use from each forecast distri-
bution for creating the ensemble. If some of the ensemble members have fewer
draws than ndraws, their forecast distributions will be resampled with replace-
ment to achieve the correct number of draws

Details

It is widely recognised in the forecasting literature that combining forecasts from different models
often results in improved forecast accuracy. The simplest way to create an ensemble is to use evenly
weighted combinations of forecasts from the different models. This is straightforward to do in a
Bayesian setting with mvgam as the posterior MCMC draws contained in each mvgam_forecast
object will already implicitly capture correlations among the temporal posterior predictions.

14 ensemble.mvgam_forecast

Value
An object of class mvgam_forecast containing the ensemble predictions. This object can be readily
used with the supplied S3 functions plot and score.

Author(s)
Nicholas J Clark

See Also

plot.mvgam_forecast, score.mvgam_forecast

Examples

Simulate some series and fit a few competing dynamic models
set.seed(1)
simdat <- sim_mvgam(

n_series = 1,

prop_trend = 0.6,

mu =1

plot_mvgam_series(
data = simdat$data_train,
newdata = simdat$data_test

)
ml <- mvgam(
y ~ 1,
trend_formula = ~ time +
s(season, bs = 'cc', k = 9),

trend_model = AR(p = 1),
noncentred = TRUE,

data = simdat$data_train,
newdata = simdat$data_test,
chains =
silent =

)

2’
2

m2 <- mvgam(
y ~ time,
trend_model = RW(),
noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test,
chains =
silent =

)

27
2

Calculate forecast distributions for each model
fcl <- forecast(ml)
fc2 <- forecast(m2)

evaluate_mvgams

Generate the ensemble forecast
ensemble_fc <- ensemble(fcl, fc2)

Plot forecasts
plot(fcl)
plot(fc2)
plot(ensemble_fc)

Score forecasts
score(fcl)
score(fc2)
score(ensemble_fc)

evaluate_mvgams Evaluate forecasts from fitted mvgam objects

Description

Evaluate forecasts from fitted mvgam objects

Usage

eval_mvgam(
object,
n_samples = 5000,
eval_timepoint = 3,
fc_horizon = 3,
n_cores = 1,

score = "drps",
log = FALSE,
weights

)

roll_eval_mvgam(
object,
n_evaluations = 5,
evaluation_seq,
n_samples = 5000,
fc_horizon = 3,
n_cores = 1,

score = "drps”,
log = FALSE,
weights

16

compare_mvgams (

model1,
model2,
n_samples =
fc_horizon =

n_evaluations

n_cores = 1,

evaluate_mvgams

1000,
3,

= 10,

score = "drps”,

log = FALSE,
weights

Arguments

object

n_samples

eval_timepoint

fc_horizon
n_cores

score

log

weights

n_evaluations

evaluation_seq

model1
model?2

Details

list object returned from mvgam

integer specifying the number of samples to generate from the model’s poste-
rior distribution

integer indexing the timepoint that represents our last ’observed’ set of out-
come data

integer specifying the length of the forecast horizon for evaluating forecasts
Deprecated. Parallel processing is no longer supported

character specifying the type of ranked probability score to use for evaluation.
Options are: variogram, drps or crps

logical. Should the forecasts and truths be logged prior to scoring? This is
often appropriate for comparing performance of models when series vary in
their observation ranges

optional vector of weights (where length(weights) == n_series) for weight-
ing pairwise correlations when evaluating the variogram score for multivariate
forecasts. Useful for down-weighting series that have larger magnitude ob-
servations or that are of less interest when forecasting. Ignored if score !=
'variogram'

integer specifying the total number of evaluations to perform

Optional integer sequence specifying the exact set of timepoints for evaluat-
ing the model’s forecasts. This sequence cannot have values <3 or > max(training
timepoints) - fc_horizon

list object returned from mvgam representing the first model to be evaluated

list object returned from mvgam representing the second model to be evaluated

eval_mvgam may be useful when both repeated fitting of a model using update.mvgam for exact
leave-future-out cross-validation and approximate leave-future-out cross-validation using 1fo_cv
are impractical. The function generates a set of samples representing fixed parameters estimated
from the full mvgam model and latent trend states at a given point in time. The trends are rolled for-
ward a total of fc_horizon timesteps according to their estimated state space dynamics to generate
an ’out-of-sample’ forecast that is evaluated against the true observations in the horizon window.

evaluate_mvgams 17

This function therefore simulates a situation where the model’s parameters had already been esti-
mated but we have only observed data up to the evaluation timepoint and would like to generate
forecasts from the latent trends that have been observed up to that timepoint. Evaluation involves
calculating an appropriate Rank Probability Score and a binary indicator for whether or not the true
value lies within the forecast’s 90% prediction interval

roll_eval_mvgam sets up a sequence of evaluation timepoints along a rolling window and itera-
tively calls eval_mvgam to evaluate ’out-of-sample’ forecasts. Evaluation involves calculating the
Rank Probability Scores and a binary indicator for whether or not the true value lies within the
forecast’s 90% prediction interval

compare_mvgams automates the evaluation to compare two fitted models using rolling window fore-
cast evaluation and provides a series of summary plots to facilitate model selection. It is essentially
a wrapper for roll_eval_mvgam

Value

For eval_mvgam, a list object containing information on specific evaluations for each series (if
using drps or crps as the score) or a vector of scores when using variogram.

For roll_eval_mvgam, a 1ist object containing information on specific evaluations for each series
as well as a total evaluation summary (taken by summing the forecast score for each series at each
evaluation and averaging the coverages at each evaluation)

For compare_mvgams, a series of plots comparing forecast Rank Probability Scores for each com-
peting model. A lower score is preferred. Note however that it is possible to select a model that
ultimately would perform poorly in true out-of-sample forecasting. For example if a wiggly smooth
function of ’year’ is included in the model then this function will be learned prior to evaluating
rolling window forecasts, and the model could generate very tight predictions as a result. But when
forecasting ahead to timepoints that the model has not seen (i.e. next year), the smooth function will
end up extrapolating, sometimes in very strange and unexpected ways. It is therefore recommended
to only use smooth functions for covariates that are adequately measured in the data (i.e. ’seasonal-
ity’, for example) to reduce possible extrapolation of smooths and let the latent trends in the mvgam
model capture any temporal dependencies in the data. These trends are time series models and so
will provide much more stable forecasts

See Also

forecast, score, 1fo_cv

Examples

Simulate from a Poisson-AR2 model with a seasonal smooth

set.seed(1)

dat <- sim_mvgam(
T =175,
n_series = 1,
prop_trend = 0.75,
trend_model = AR(p = 2),
family = poisson()

)

Fit an appropriate model

18

evaluate_mvgams

mod_ar2 <- mvgam(
formula = y ~ s(season, bs = 'cc'),
trend_model = AR(p = 2),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
chains = 2,
silent = 2

Fit a less appropriate model
mod_rw <- mvgam(
formula =y ~ 1,
trend_model = RW(),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
chains = 2,
silent = 2

Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)
fc_rw <- forecast(mod_rw)
score_ar2 <- score(

object = fc_ar2,

score = 'drps'
)
score_rw <- score(

object = fc_rw,

score = 'drps'
)
sum(score_ar2$series_1%$score)
sum(score_rw$series_1$score)

Use rolling evaluation for approximate comparisons of 3-step ahead
forecasts across the training period
compare_mvgams (

modell = mod_ar2,

model2 = mod_rw,

fc_horizon = 3,

n_samples = 1000,

n_evaluations = 5

Now use approximate leave-future-out CV to compare
rolling forecasts; start at time point 40 to reduce
computational time and to ensure enough data is available
for estimating model parameters

1fo_ar2 <- 1fo_cv(

object = mod_ar2,

min_t = 40,

fc_horizon = 3,

#
#
#
#

fevd.mvgam 19

silent = 2

)

1fo_rw <- 1fo_cv(
object = mod_rw,
min_t = 40,
fc_horizon = 3,
silent = 2

)

Plot Pareto-K values and ELPD estimates
plot(lfo_ar2)
plot(1lfo_rw)

Proportion of timepoints in which AR2 model gives

better forecasts

length(which((1fo_ar2$elpds - lfo_rw$elpds) > 0)) /
length(1fo_ar2$elpds)

A higher total ELPD is preferred
1fo_ar2$sum_ELPD
1fo_rw$sum_ELPD

fevd.mvgam Calculate latent VAR forecast error variance decompositions

Description

Compute forecast error variance decompositions from mvgam models with Vector Autoregressive
dynamics

Usage

fevd(object, ...)

S3 method for class 'mvgam'

fevd(object, h =10, ...)
Arguments
object list object of class mvgam resulting from a call to mvgam() that used a Vector

Autoregressive latent process model (either as VAR(cor = FALSE) or VAR(cor =
TRUE); see VAR() for details)

ignored

h Positive integer specifying the forecast horizon over which to calculate the IRF

20 fevd.mvgam

Value

See mvgam_fevd-class for a full description of the quantities that are computed and returned by
this function, along with key references.

Author(s)
Nicholas J Clark

References

Liitkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. 2nd ed. Springer-Verlag
Berlin Heidelberg.

See Also

VAR(Q), irf (), stability(), mvgam_fevd-class

Examples

Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(

family = gaussian(),

n_series = 4,

trend_model = VAR(cor = TRUE),

prop_trend = 1
)

plot_mvgam_series(data = simdat$data_train, series = "all")

Fit a model that uses a latent VAR(1)
mod <- mvgam(

formula =y ~ -1,

trend_formula = ~ 1,

trend_model = VAR(cor = TRUE),

family = gaussian(),

data = simdat$data_train,

chains = 2,

silent = 2
)

Plot the autoregressive coefficient distributions;
use 'dir = "v"' to arrange the order of facets
correctly
mcme_plot(
mod,
variable = 'A",
regex = TRUE,
type = 'hist',
facet_args = list(dir = 'v')

)

Calulate forecast error variance decompositions for each series
fevds <- fevd(mod, h = 12)

fitted.mvgam

21

Plot median contributions to forecast error variance

plot(fevds)

View a summary of the error variance decompositions

summary (fevds)

fitted.mvgam

Expected values of the posterior predictive distribution for mvgam
objects

Description

This method extracts posterior estimates of the fitted values (i.e. the actual predictions, including
estimates for any trend states, that were obtained when fitting the model). It also includes an option
for obtaining summaries of the computed draws.

Usage

S3 method for class 'mvgam'

fitted(
object,

process_error = TRUE,

scale = c("response”, "linear"),
summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

Arguments

object

process_error

scale

summary

An object of class mvgam

Logical. If TRUE and a dynamic trend model was fit, expected uncertainty in
the process model is accounted for by using draws from a stationary, zero-
centred multivariate Normal distribution using any estimated process variance-
covariance parameters. If FALSE, uncertainty in the latent trend component is
ignored when calculating predictions

Either "response” or "linear"”. If "response”, results are returned on the
scale of the response variable. If "1inear”, results are returned on the scale of
the linear predictor term, that is without applying the inverse link function or
other transformations.

Should summary statistics be returned instead of the raw values? Default is
TRUE..

22 fitted.mvgam

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

This method gives the actual fitted values from the model (i.e. what you will see if you generate
hindcasts from the fitted model using hindcast.mvgam with type = 'expected'). These predic-
tions can be overly precise if a flexible dynamic trend component was included in the model. This
is in contrast to the set of predict functions (i.e. posterior_epred.mvgam or predict.mvgam),
which will assume any dynamic trend component has reached stationarity when returning hypo-
thetical predictions.

Value

An array of predicted mean response values.
If summary = FALSE the output resembles those of posterior_epred.mvgam and predict.mvgam.

If summary = TRUE the output is an n_observations x E matrix. The number of summary statistics
E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or
median depending on argument robust), while the Est.Error column contains uncertainty esti-
mates (either standard deviation or median absolute deviation depending on argument robust). The
remaining columns starting with Q contain quantile estimates as specified via argument probs.

Author(s)
Nicholas J Clark

See Also

hindcast.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
data = simdat$data_train,
chains = 2,
silent = 2

forecast. mvgam 23

Extract fitted values (posterior expectations)
expectations <- fitted(mod)
str(expectations)

forecast.mvgam Extract or compute hindcasts and forecasts for a fitted mvgam object

Description

Extract or compute hindcasts and forecasts for a fitted mvgam object

Usage

S3 method for class 'mvgam'

forecast(object, newdata, data_test, n_cores = 1, type = "response”, ...)
Arguments

object list object of class mvgam or jsdgam. See mvgam()

newdata Optional dataframe or 1ist of test data containing the same variables that were

included in the original data used to fit the model. If included, the covariate
information in newdata will be used to generate forecasts from the fitted model
equations. If this same newdata was originally included in the call to mvgam,
then forecasts have already been produced by the generative model and these
will simply be extracted and plotted. However if no newdata was supplied to
the original model call, an assumption is made that the newdata supplied here
comes sequentially after the data supplied in the original model (i.e. we assume
there is no time gap between the last observation of series 1 in the original data
and the first observation for series 1 in newdata)

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

n_cores Deprecated. Parallel processing is no longer supported

type When this has the value 1ink (default) the linear predictor is calculated on the

link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms”, each component of the linear
predictor is returned separately in the form of a 1ist (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent
abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

Ignored

24 forecast. mvgam

Details

Posterior predictions are drawn from the fitted mvgam and used to simulate a forecast distribution

Value

An object of class mvgam_forecast containing hindcast and forecast distributions. See mvgam_forecast-class
for details.

See Also

hindcast.mvgam(), plot.mvgam_forecast(), summary.mvgam_forecast(), score.mvgam_forecast()
ensemble.mvgam_forecast()

Examples

Simulate data with 3 series and AR trend model
simdat <- sim_mvgam(n_series = 3, trend_model = AR())

Fit mvgam model
mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2

Hindcasts on response scale
hc <- hindcast(mod)
str(hc)

Use summary() to extract hindcasts / forecasts for custom plotting
head(summary(hc), 12)

Or just use the plot() function for quick plots
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

Forecasts on response scale
fc <- forecast(

mod,

newdata = simdat$data_test
)
str(fc)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Forecasts as expectations

formula.mvgam 25

fc <~ forecast(
mod,
newdata = simdat$data_test,
type = 'expected'
)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Dynamic trend extrapolations
fc <- forecast(
mod,
newdata = simdat$data_test,
type = 'trend'
)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

formula.mvgam Extract formulae from mvgam objects

Description

Extract formulae from mvgam objects

Usage

S3 method for class 'mvgam'
formula(x, trend_effects = FALSE, ...)

S3 method for class 'mvgam_prefit'

formula(x, trend_effects = FALSE, ...)
Arguments
X mvgam, jsdgam or mvgam_prefit object

trend_effects logical, return the formula from the observation model (if FALSE) or from the
underlying process model (if TRUE)

Ignored

Value

A formula object

26

Author(s)
Nicholas J Clark

get_mvgam_priors

get_mvgam_priors

Extract information on default prior distributions for an mvgam
model

Description

This function lists the parameters that can have their prior distributions changed for a given model,
as well listing their default distributions

Usage

get_mvgam_priors(

formula,

trend_formula,
factor_formula,

knots,
trend_knots,
trend_model = "None”,
family = poisson(),
data,
unit = time,
species = series,
use_lv = FALSE,
n_lv,
trend_map,

)

Arguments
formula A formula object specifying the GAM observation model formula. These are

trend_formula

exactly like the formula for a GLM except that smooth terms, s(), te(), ti(),
t2(), as well as time-varying dynamic() terms, nonparametric gp() terms and
offsets using of fset (), can be added to the right hand side to specify that the
linear predictor depends on smooth functions of predictors (or linear functionals
of these).

In nmix () family models, the formula is used to set up a linear predictor for
the detection probability. Details of the formula syntax used by mvgam can be
found in mvgam_formulae

An optional formula object specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture
process model evolution separately from the observation model.

Important notes:

get_mvgam_priors

27

» Should not have a response variable specified on the left-hand side (e.g., ~
season + s(year))

* Use trend instead of series for effects that vary across time series
¢ Only available for RW(), AR() and VAR() trend models
e In nmix() family models, sets up linear predictor for latent abundance

 Consider dropping one intercept using - 1 convention to avoid estimation
challenges

factor_formula Can be supplied instead trend_formula to match syntax from jsdgam

knots

trend_knots

trend_model

family

An optional 1ist containing user specified knot values for basis construction.
For most bases the user simply supplies the knots to be used, which must match
up with the k value supplied. Different terms can use different numbers of knots,
unless they share a covariate.

As for knots above, this is an optional 1ist of knot values for smooth functions
within the trend_formula.

character or function specifying the time series dynamics for the latent trend.
Available options:

* None: No latent trend component (GAM component only, like gam)

* ZMVN or ZMVN(): Zero-Mean Multivariate Normal (Stan only)

e 'RW' or RW(): Random Walk

* "AR1', 'AR2"', "AR3"' or AR(p =1, 2, 3): Autoregressive models

* '"CAR1' or CAR(p = 1): Continuous-time AR (Ornstein—Uhlenbeck process)
* '"VAR1' or VAR(): Vector Autoregressive (Stan only)

* 'PWlogistic’', 'PWlinear' or PW(): Piecewise trends (Stan only)

* 'GP' or GP(): Gaussian Process with squared exponential kernel (Stan
only)

Additional features:

* Moving average and/or correlated process error terms available for most
types (e.g., RW(cor = TRUE) for multivariate Random Walk)

* Hierarchical correlations possible for structured data
* See mvgam_trends for details and ZMVN() for examples

family specifying the exponential observation family for the series.
Supported families:

e gaussian(): Real-valued data

* betar(): Proportional data on (0, 1)

* lognormal(): Non-negative real-valued data
e student_t(): Real-valued data

* Gamma(): Non-negative real-valued data

* bernoulli(): Binary data

¢ poisson(): Count data (default)

* nb(): Overdispersed count data

e binomial(): Count data with imperfect detection when number of trials is
known (use cbind() to bind observations and trials)

28

data

unit

species

use_lv

n_lv

trend_map

get_mvgam_priors

* beta_binomial(): As binomial() but allows for overdispersion

* nmix(): Count data with imperfect detection when number of trials is un-
known (State-Space N-Mixture model with Poisson latent states and Bino-
mial observations)

See mvgam_families for more details.

A dataframe or list containing the model response variable and covariates
required by the GAM formula and optional trend_formula.

Required columns for most models:

* series: A factor index of the series IDs (number of levels should equal
number of unique series labels)

* time: numeric or integer index of time points. For most dynamic trend
types, time should be measured in discrete, regularly spaced intervals (i.e.,
c(1, 2, 3, ...)). Irregular spacing is allowed for trend_model = CAR(1),
but zero intervals are adjusted to 1e-12 to prevent sampling errors.

Special cases:

* Models with hierarchical temporal correlation (e.g., AR(gr = region, subgr
= species)) should NOT include a series identifier

* Models without temporal dynamics (trend_model = 'None' or trend_model
=ZMVN()) don’t require a time variable

The unquoted name of the variable that represents the unit of analysis in data
over which latent residuals should be correlated. This variable should be either
a numeric or integer variable in the supplied data. Defaults to time to be
consistent with other functionalities in mvgam, though note that the data need
not be time series in this case. See examples below for further details and expla-
nations

The unquoted name of the factor variable that indexes the different response
units in data (usually 'species' in a JSDM). Defaults to series to be consis-
tent with other mvgam models

logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-
duced dimension format. Only available for RW(), AR() and GP () trend models.
Default is FALSE. See 1v_correlations for examples.

integer specifying the number of latent dynamic factors to use if use_lv ==
TRUE. Cannot exceed n_series. Default is min(2, floor(n_series / 2)).

Optional data.frame specifying which series should depend on which latent
trends. Enables multiple series to depend on the same latent trend process with
different observation processes.

Required structure:
* Column series: Single unique entry for each series (matching factor levels
in data)
e Column trend: Integer values indicating which trend each series depends
on
Notes:

* Sets up latent factor model by enabling use_1v = TRUE
* Process model intercept is NOT automatically suppressed

get_mvgam_priors 29

* Not yet supported for continuous time models (CAR())

Not currently used

Details

Users can supply a model formula, prior to fitting the model, so that default priors can be inspected
and altered. To make alterations, change the contents of the prior column and supplying this
data.frame to the mvgam or jsdgam functions using the argument priors. If using Stan as the
backend, users can also modify the parameter bounds by modifying the new_lowerbound and/or
new_upperbound columns. This will be necessary if using restrictive distributions on some param-
eters, such as a Beta distribution for the trend sd parameters for example (Beta only has support on
(0,1)), so the upperbound cannot be above 1. Another option is to make use of the prior modifica-
tion functions in brms (i.e. prior) to change prior distributions and bounds (just use the name of
the parameter that you’d like to change as the class argument; see examples below)

Value

either a data. frame containing the prior definitions (if any suitable priors can be altered by the
user) or NULL, indicating that no priors in the model can be modified

Note

Only the prior, new_lowerbound and/or new_upperbound columns of the output should be altered
when defining the user-defined priors for the model. Use only if you are familiar with the underlying
probabilistic programming language. There are no sanity checks done to ensure that the code is legal
(i.e. to check that lower bounds are smaller than upper bounds, for example)

Author(s)
Nicholas J Clark

See Also

mvgam, mvgam_formulae, prior

Examples

#
Example 1: Simulate data and inspect default priors
#

dat <- sim_mvgam(trend_rel = 0.5)

Get a model file that uses default mvgam priors for inspection (not
always necessary, but this can be useful for testing whether your
updated priors are written correctly)
mod_default <- mvgam(

y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,

family = nb(),

data = dat$data_train,

trend_model = AR(p = 2),

get_mvgam_priors

run_model = FALSE
)

Inspect the model file with default mvgam priors
stancode (mod_default)

Look at which priors can be updated in mvgam
test_priors <- get_mvgam_priors(
y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2)
)

test_priors

#

Example 2: Modify priors manually

#

Make a few changes; first, change the population mean for the
series-level random intercepts
test_priors$prior[2] <- "mu_raw ~ normal(@.2, 0.5);"

Now use stronger regularisation for the series-level AR2 coefficients
test_priors$prior[5] <- "ar2 ~ normal(@, 0.25);"

Check that the changes are made to the model file without any warnings
by setting 'run_model = FALSE'
mod <- mvgam(
y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = test_priors,
run_model = FALSE
)

stancode (mod)

No warnings, the model is ready for fitting now in the usual way with
the addition of the 'priors' argument

#

Example 3: Use brms syntax for prior modification

#

The same can be done using 'brms' functions; here we will also change
the ar1 prior and put some bounds on the ar coefficients to enforce
stationarity; we set the prior using the 'class' argument in all brms
prior functions

brmsprior <- c(

prior(normal(@.2, ©0.5), class = mu_raw),

prior(normal(@, 0.25), class = arl, 1lb = -1, ub = 1),

prior(normal(@, ©.25), class = ar2, lb = -1, ub = 1)

#
#
#
#

get_mvgam_priors

)

brmsprior

mod <- mvgam(
y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = brmsprior,
run_model = FALSE
)

stancode (mod)

#

Example 4: Error handling example

#

Look at what is returned when an incorrect spelling is used
test_priors$prior[5] <- "ar2_bananas ~ normal(@, 0.25);"
mod <- mvgam(
y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = test_priors,
run_model = FALSE
)

stancode (mod)

#
Example 5: Parametric (fixed effect) priors

#

simdat <- sim_mvgam()

Add a fake covariate
simdat$data_train$cov <- rnorm(NROW(simdat$data_train))

priors <- get_mvgam_priors(
y ~ cov + s(season),
data = simdat$data_train,
family = poisson(),
trend_model = AR()

)

Change priors for the intercept and fake covariate effects
priors$prior[1] <- "(Intercept) ~ normal(e, 1);"
priors$prior[2] <- "cov ~ normal(o, 0.1);"

mod2 <- mvgam(
y ~ cov + s(season),
data = simdat$data_train,
trend_model = AR(),

31

32

family = poisson(),
priors = priors,
run_model = FALSE

)

stancode (mod2)

#

Example 6: Alternative brms syntax for fixed effects
#

Likewise using 'brms' utilities (note that you can use Intercept rather
than "~ (Intercept)™) to change priors on the intercept
brmsprior <- c(
prior(normal(@.2, ©0.5), class = cov),
prior(normal(@, 0.25), class = Intercept)
)

brmsprior

mod2 <- mvgam(
y ~ cov + s(season),
data = simdat$data_train,
trend_model = AR(),
family = poisson(),
priors = brmsprior,
run_model = FALSE

)

stancode(mod?2)

#

Example 7: Bulk prior assignment

#

The "class = 'b'" shortcut can be used to put the same prior on all

'fixed' effect coefficients (apart from any intercepts)
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
dat$time <- 1:NROW(dat)
mod <- mvgam(
y ~ x0 + x1 + s(x2) + s(x3),
priors = prior(normal(@, 0.75), class = "b"),
data = dat,
family = gaussian(),
run_model = FALSE
)

stancode (mod)

GP

GP Specify dynamic Gaussian process trends in mvgam models

GP 33

Description
Set up low-rank approximate Gaussian Process trend models using Hilbert basis expansions in

mvgam. This function does not evaluate its arguments — it exists purely to help set up a model with
particular GP trend models.

Usage

GP(...)

Arguments

unused

Details
A GP trend is estimated for each series using Hilbert space approximate Gaussian Processes. In
mvgam, latent squared exponential GP trends are approximated using by default 2@ basis functions

and using a multiplicative factor of ¢ = 5/4, which saves computational costs compared to fitting
full GPs while adequately estimating GP alpha and rho parameters.

Value

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam.

Author(s)

Nicholas J Clark

References

Riutort-Mayol G, Burkner PC, Andersen MR, Solin A and Vehtari A (2023). Practical Hilbert space
approximate Bayesian Gaussian processes for probabilistic programming. Statistics and Computing
33, 1. https://doi.org/10.1007/s11222-022-10167-2

See Also

gp

34 gratia_mvgam_enhancements

gratia_mvgam_enhancements
Enhance post-processing of mvgam models using gratia functionality

Description

These evaluation and plotting functions exist to allow some popular gratia methods to work with
mvgam or jsdgam models

Usage

drawDotmvgam(
object,
trend_effects = FALSE,
data = NULL,
select = NULL,
parametric = FALSE,
terms = NULL,
residuals = FALSE,
scales = c("free", "fixed"),
ci_level = 0.95,
n = 100,
n_3d = 16,
n_4d = 4,
unconditional = FALSE,
overall_uncertainty = TRUE,
constant = NULL,

fun = NULL,
dist = 0.1,
rug = TRUE,

contour = TRUE,
grouped_by = FALSE,
ci_alpha = 0.2,

ci_col = "black”,
smooth_col = "black",
resid_col = "steelblue3”,
contour_col = "black”,

n_contour = NULL,
partial_match = FALSE,
discrete_colour = NULL,
discrete_fill = NULL,
continuous_colour = NULL,
continuous_fill = NULL,

position = "identity”,
angle = NULL,
ncol = NULL,

nrow = NULL,

gratia_mvgam_enhancements

)

guides = "keep”,

widths = NULL,

heights = NULL,

crs = NULL,

default_crs = NULL,

lims_method = "cross”,

wrap = TRUE,

envir = environment(formula(object)),

eval_smoothDothilbertDotsmooth(

)

smooth,
model,

n = 100,
n_3d = NULL,
n_4d = NULL,
data = NULL,

unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,

eval_smoothDotmodDotsmooth(

)

smooth,
model,

n =100,
n_3d = NULL,
n_4d = NULL,
data = NULL,

unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,

eval_smoothDotmoiDotsmooth(

smooth,
model,

n =100,
n_3d = NULL,
n_4d = NULL,
data = NULL,

unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,

35

36

Arguments

object

trend_effects

data

select

parametric

terms

residuals

scales

ci_level

n

n_3d, n_4d

unconditional

gra tia m Vgam_enhancemen ts

a fitted mvgam, the result of a call to mvgam()

logical specifying whether smooth terms from the trend_formula should be
drawn. If FALSE, only terms from the observation formula are drawn. If TRUE,
only terms from the trend_formula are drawn

a data frame of covariate values at which to evaluate the model’s smooth func-
tions

character, logical, or numeric; which smooths to plot. If NULL, the default, then
all model smooths are drawn. Character select matches the labels for smooths
as shown for example in the output from summary(object). Logical select
operates as per numeric select in the order that smooths are stored

logical; plot parametric terms also? Note that select is used for selecting which
smooths to plot. The terms argument is used to select which parametric effects
are plotted. The default, as with mgcv: :plot.gam(), is to not draw parametric
effects

character; which model parametric terms should be drawn? The Default of NULL
will plot all parametric terms that can be drawn.

currently ignored for mvgam models

character; should all univariate smooths be plotted with the same y-axis scale? If
scales = "free”, the default, each univariate smooth has its own y-axis scale.
If scales = "fixed", a common y axis scale is used for all univariate smooths.

Currently does not affect the y-axis scale of plots of the parametric terms
numeric between 0 and 1; the coverage of credible interval.

numeric; the number of points over the range of the covariate at which to evalu-
ate the smooth

numeric; the number of points over the range of last covariate in a 3D or 4D
smooth. The default is NULL which achieves the standard behaviour of using n
points over the range of all covariate, resulting in n*d evaluation points, where d
is the dimension of the smooth. For d > 2 this can result in very many evaluation
points and slow performance. For smooths of d >4, the value of n_4d will
be used for all dimensions > 4, unless this is NULL, in which case the default
behaviour (using n for all dimensions) will be observed

ignored for mvgam models as all appropriate uncertainties are already included
in the posterior estimates

overall_uncertainty

constant

ignored for mvgam models as all appropriate uncertainties are already included
in the posterior estimates

numeric; a constant to add to the estimated values of the smooth. constant,
if supplied, will be added to the estimated value before the confidence band is
computed

gratia_mvgam_enhancements 37

fun function; a function that will be applied to the estimated values and confidence
interval before plotting. Can be a function or the name of a function. Function
fun will be applied after adding any constant, if provided

dist numeric; if greater than 0, this is used to determine when a location is too far
from data to be plotted when plotting 2-D smooths. The data are scaled into the
unit square before deciding what to exclude, and dist is a distance within the
unit square. See mgcv: :exclude. too. far() for further details

rug logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot
locations of data for higher dimensions.

contour logical; should contours be draw on the plot using ggplot2: : geom_contour ()

grouped_by logical; should factor by smooths be drawn as one panel per level of the factor

(FALSE, the default), or should the individual smooths be combined into a single
panel containing all levels (TRUE)?

ci_alpha numeric; alpha transparency for confidence or simultaneous interval

ci_col colour specification for the confidence/credible intervals band. Affects the fill
of the interval

smooth_col colour specification for the smooth line

resid_col colour specification for residual points. Ignored

contour_col colour specification for contour lines

n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines

being drawn. See ggplot2: :geom_contour()
partial_match logical; should smooths be selected by partial matches with select? If TRUE,

select can only be a single string to match against
discrete_colour

a suitable colour scale to be used when plotting discrete variables
discrete_fill a suitable fill scale to be used when plotting discrete variables.
continuous_colour

a suitable colour scale to be used when plotting continuous variables
continuous_fill

a suitable fill scale to be used when plotting continuous variables

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function
angle numeric; the angle at which the x axis tick labels are to be drawn passed to the
angle argument of ggplot2: :guide_axis()
ncol, nrow numeric; the numbers of rows and columns over which to spread the plots
guides character; one of "keep" (the default), "collect”, or "auto"”. Passed to patchwork: :plot_layout ()

widths, heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid. If there is more than 1 plot and
widths = NULL, the value of widths will be set internally to widths =1 to ac-
commodate plots of smooths that use a fixed aspect ratio.=

crs the coordinate reference system (CRS) to use for the plot. All data will be
projected into this CRS. See ggplot2::coord_sf () for details

38

default_crs

lims_method

wrap

envir

smooth

model

Details

gra tia m Vgam_enhancemen ts

the coordinate reference system (CRS) to use for the non-sf layers in the plot.
If left at the default NULL, the CRS used is 4326 (WGS84), which is appropriate
for spline-on-the-sphere smooths, which are parameterized in terms of latitude
and longitude as coordinates. See ggplot2: :coord_sf () for more details

character; affects how the axis limits are determined. See ggplot2: :coord_sf ().
Be careful; in testing of some examples, changing this to "orthogonal” for ex-
ample with the chlorophyll-a example from Simon Wood’s GAM book quickly
used up all the RAM in my test system and the OS killed R. This could be in-
correct usage on my part; right now the grid of points at which SOS smooths
are evaluated (if not supplied by the user) can produce invalid coordinates for
the corners of tiles as the grid is generated for tile centres without respect to the
spacing of those tiles

logical; wrap plots as a patchwork? If FALSE, a list of ggplot objects is returned,
1 per term plotted

an environment to look up the data within
additional arguments passed to other methods

n

a smooth object of class "gp.smooth” (returned from a model using either
the dynamic() function or the gp() function) or of class "moi.smooth” or
"mod. smooth” (returned from a model using the *'moi’ or 'mod’ basis)

a fitted mgcv model of clas gam or bam

These methods allow mvgam models to be Enhanced if users have the gratia package installed,
making available the popular draw() function to plot partial effects of mvgam smooth functions
using ggplot2: :ggplot() utilities

Author(s)

Nicholas J Clark

Examples

Fit a simple GAM and draw partial effects of smooths using 'gratia’

set.seed(0)

dat <- mgcv::gamSim(

eg = 1,
n = 200,
scale = 2
)
mod <- mvgam(
formula =y ~ s(x1, bs = 'moi') +
te(x0, x2),
data = dat,
family = gaussian(),
chains = 2,
silent = 2

hindcast.mvgam 39

if (require("gratia”)) {
gratia::draw(mod)

}

hindcast.mvgam Extract hindcasts for a fitted mvgam object

Description

Extract hindcasts for a fitted mvgam object

Usage

hindcast(object, ...)

S3 method for class 'mvgam'

hindcast(object, type = "response”, ...)
Arguments
object list object of class mvgam or jsdgam. See mvgam()
Ignored
type When this has the value 1ink (default) the linear predictor is calculated on the

link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms”, each component of the linear
predictor is returned separately in the form of a 1ist (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent
abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

Details
Posterior hindcasts (i.e. retrodictions) are drawn from the fitted mvgam and organized into a conve-
nient format for plotting

Value

An object of class mvgam_forecast containing hindcast distributions. See mvgam_forecast-class
for details.

40 how_to_cite.mvgam

See Also

plot.mvgam_forecast(), summary.mvgam_forecast(), forecast.mvgam(), fitted.mvgam(),
predict.mvgam()

Examples

simdat <- sim_mvgam(n_series = 3, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),

noncentred = TRUE,

data = simdat$data_train,

chains = 2,

silent = 2)

Hindcasts on response scale
hc <- hindcast(mod)

str(hc)

head(summary(hc), 12)
plot(hc, series = 1)

plot(hc, series = 2)

plot(hc, series = 3)

Hindcasts as expectations

hc <- hindcast(mod, type = 'expected')
head(summary(hc), 12)

plot(hc, series = 1)

plot(hc, series = 2)

plot(hc, series = 3)

Estimated latent trends

hc <- hindcast(mod, type = 'trend')
head(summary(hc), 12)

plot(hc, series = 1)

plot(hc, series = 2)

plot(hc, series = 3)

how_to_cite.mvgam Generate a methods description for mvgam models

Description
Create a brief but fully referenced methods description, along with a useful list of references, for
fitted mvgam and jsdgam models.

Usage

how_to_cite(object, ...)

how_to_cite.mvgam 41

S3 method for class 'mvgam'

how_to_cite(object, ...)
Arguments
object list object of class mvgam resulting from a call to mvgam() or jsdgam()
ignored
Details

This function uses the model’s structure to come up with a very basic but hopefully useful meth-
ods description that can help users to appropriately acknowledge the hard work of developers and
champion open science. Please do not consider the text returned by this function to be a completely
adequate methods section; it is only meant to get you started.

Value

An object of class how_to_cite containing a text description of the methods as well as lists of both
primary and additional references.

Author(s)
Nicholas J Clark

See Also

citation, mvgam, jsdgam
Examples

Simulate 4 time series with hierarchical seasonality
and a VAR(1) dynamic process

set.seed(Q)

simdat <- sim_mvgam(
seasonality = 'hierarchical',
trend_model = VAR(cor = TRUE),
family = gaussian()

)

Fit an appropriate model

mod1 <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
data = simdat$data_train,
family = gaussian(),
trend_model = VAR(cor = TRUE),
chains = 2,
silent = 2

42

how_to_cite(mod1)

dat <- mgcv::gamSim(1, n = 30, scale = 2)

Fit a model that uses an approximate GP from brms
mod2 <- mvgam(
y ~ gp(x2, k =12),

data = dat,
family = gaussian(),
chains = 2,
silent = 2

)

how_to_cite(mod2)

index-mvgam

index-mvgam Index mvgam objects

Description

Index mvgam objects

Usage
S3 method for class 'mvgam'
variables(x, ...)
Arguments
X list object returned from mvgam. See mvgam()

Arguments passed to individual methods (if applicable).

Value

a list object of the variables that can be extracted, along with their aliases

Author(s)
Nicholas J Clark

irf.mvgam 43

Examples

Simulate data and fit a model
simdat <- sim_mvgam(

n_series = 1,

trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
data = simdat$data_train,

chains = 2,
silent = 2
)
Extract model variables
variables(mod)
irf.mvgam Calculate latent VAR impulse response functions
Description

Compute Generalized or Orthogonalized Impulse Response Functions (IRFs) from mvgam models
with Vector Autoregressive dynamics

Usage

irf(object, ...)

S3 method for class 'mvgam'

irf(object, h = 10, cumulative = FALSE, orthogonal = FALSE, ...)
Arguments
object list object of class mvgam resulting from a call to mvgam() that used a Vector

Autoregressive latent process model (either as VAR(cor = FALSE) or VAR(cor =
TRUE); see VAR() for details)

ignored
h Positive integer specifying the forecast horizon over which to calculate the IRF
cumulative Logical flag indicating whether the IRF should be cumulative
orthogonal Logical flag indicating whether orthogonalized IRFs should be calculated. Note

that the order of the variables matters when calculating these

44 irf. mvgam

Details

See mvgam_irf-class for a full description of the quantities that are computed and returned by this
function, along with key references.

Value

An object of mvgam_irf-class containing the posterior IRFs. This object can be used with the
supplied S3 functions plot.mvgam_irf () and summary.mvgam_irf ()

Author(s)
Nicholas J Clark

See Also

mvgam_irf-class, VAR(), plot.mvgam_irf (), stability(), fevd()

Examples

Fit a model to the portal time series that uses a latent VAR(1)
mod <- mvgam(

formula = captures ~ -1,

trend_formula = ~ trend,

trend_model = VAR(cor = TRUE),

family = poisson(),

data = portal_data,

chains = 2,

silent = 2

)

Plot the autoregressive coefficient distributions;
use 'dir = "v"' to arrange the order of facets
correctly
mcme_plot(
mod,
variable = 'A',
regex = TRUE,
type = 'hist',
facet_args = list(dir = 'v')

)

Calulate Generalized IRFs for each series
irfs <- irf(

mod,

h =12,

cumulative = FALSE
)

Plot them

plot(irfs, series = 1)
plot(irfs, series = 2)
plot(irfs, series = 3)

jsdgam 45

plot(irfs, series = 4)

Calculate posterior median, upper and lower 95th quantiles
of the impulse responses
summary (irfs)

jsdgam Fit Joint Species Distribution Models in mvgam

Description

This function sets up a Joint Species Distribution Model whereby the residual associations among
species can be modelled in a reduced-rank format using a set of latent factors. The factor specifica-
tion is extremely flexible, allowing users to include spatial, temporal or any other type of predictor
effects to more efficiently capture unmodelled residual associations, while the observation model
can also be highly flexible (including all smooth, GP and other effects that mvgam can handle)

Usage

jsdgam(
formula,
factor_formula = ~-1,
knots,
factor_knots,
data,
newdata,
family = poisson(),
unit = time,
species = series,
share_obs_params = FALSE,
priors,
n_lv = 2,
backend = getOption("brms.backend”, "cmdstanr"),
algorithm = getOption("brms.algorithm”, "sampling”),
control = list(max_treedepth = 10, adapt_delta = 0.8),
chains = 4,
burnin = 500,
samples = 500,
thin = 1,
parallel = TRUE,
threads = 1,
silent = 1,
run_model = TRUE,
return_model_data = FALSE,
residuals = TRUE,

46

Arguments

formula

factor_formula

knots

factor_knots

data

newdata

family

unit

jsdgam

A formula object specifying the GAM observation model formula. These are
exactly like the formula for a GLM except that smooth terms, s(), te(), ti(),
t2(), as well as time-varying dynamic() terms, nonparametric gp() terms and
offsets using of fset (), can be added to the right hand side to specify that the
linear predictor depends on smooth functions of predictors (or linear function-
als of these). Details of the formula syntax used by mvgam can be found in
mvgam_formulae

A formula object specifying the linear predictor effects for the latent factors.
Use by = trend within calls to functional terms (i.e. s(), te(), ti(), t2(Q),
dynamic(), or gp()) to ensure that each factor captures a different axis of vari-
ation. See the example below as an illustration

An optional 1ist containing user specified knot values for basis construction.
For most bases the user simply supplies the knots to be used, which must match
up with the k value supplied. Different terms can use different numbers of knots,
unless they share a covariate.

An optional 1ist containing user specified knot values to be used for basis con-
struction of any smooth terms in factor_formula. For most bases the user
simply supplies the knots to be used, which must match up with the k value sup-
plied (note that the number of knots is not always just k). Different terms can
use different numbers of knots, unless they share a covariate

A dataframe or list containing the model response variable and covariates
required by the GAM formula and factor_formula objects

Optional dataframe or list of test data containing the same variables as in
data. If included, observations in variable y will be set to NA when fitting the
model so that posterior simulations can be obtained.

family specifying the observation family for the outcomes. Currently supported
families are:

e gaussian() for real-valued data

* betar() for proportional data on (@,1)

* lognormal() for non-negative real-valued data

e student_t() for real-valued data

* Gamma() for non-negative real-valued data

* bernoulli() for binary data

e poisson() for count data

* nb() for overdispersed count data

* binomial() for count data with imperfect detection when the number of
trials is known; note that the cbind() function must be used to bind the
discrete observations and the discrete number of trials

* beta_binomial() as for binomial() but allows for overdispersion
Default is poisson(). See mvgam_families for more details

The unquoted name of the variable that represents the unit of analysis in data
over which latent residuals should be correlated. This variable should be either
a numeric or integer variable in the supplied data. Defaults to time to be

jsdgam 47

consistent with other functionalities in mvgam, though note that the data need
not be time series in this case. See examples below for further details and expla-
nations

species The unquoted name of the factor variable that indexes the different response
units in data (usually 'species' in a JSDM). Defaults to series to be consis-
tent with other mvgam models

share_obs_params
logical. If TRUE and the family has additional family-specific observation
parameters (e.g., variance components, dispersion parameters), these will be
shared across all outcome variables. Useful when multiple outcomes share prop-
erties. Default is FALSE.

priors An optional data.frame with prior definitions (in Stan syntax) or, preferen-
tially, a vector containing objects of class brmsprior (see. prior for details).
See get_mvgam_priors and for more information on changing default prior dis-
tributions

n_lv integer the number of latent factors to use for modelling residual associations.
Cannot be > n_species. Defaults arbitrarily to 2

1

backend Character string naming the package for Stan model fitting. Options are "cmdstanr’
(default) or "rstan”. Can be set globally via "brms.backend” option. See
https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstanr/ for details.
algorithm Character string naming the estimation approach:
e "sampling": MCMC (default)
e "meanfield”: Variational inference with factorized normal distributions
e "fullrank”: Variational inference with multivariate normal distribution
* "laplace”: Laplace approximation (cmdstanr only)
e "pathfinder”: Pathfinder algorithm (cmdstanr only)
Can be set globally via "brms.algorithm” option. Limited testing suggests
"meanfield” performs best among non-MCMC approximations for dynamic

GAMs.

control Named list for controlling sampler behaviour. Valid elements include max_treedepth,
adapt_deltaand init.

chains integer specifying the number of parallel chains for the model. Ignored for
variational inference algorithms.

burnin integer specifying the number of warmup iterations to tune sampling algo-
rithms. Ignored for variational inference algorithms.

samples integer specifying the number of post-warmup iterations for sampling the pos-
terior distribution.

thin Thinning interval for monitors. Ignored for variational inference algorithms.

parallel logical specifying whether to use multiple cores for parallel MCMC simula-

tion. If TRUE, uses min(c(chains, parallel: :detectCores() - 1)) cores.

threads integer Experimental option to use multithreading for within-chain paralleli-
sation in Stan. We recommend its use only if you are experienced with Stan’s
reduce_sum function and have a slow running model that cannot be sped up by
any other means. Currently works for all families when using cmdstanr as the
backend

48

jsdgam
silent Verbosity level between @ and 2. If 1 (default), most informational messages
are suppressed. If 2, even more messages are suppressed. Sampling progress
is still printed - set refresh = @ to disable. For backend = "rstan”, also set
open_progress = FALSE to prevent additional progress bars.
run_model logical. If FALSE, the model is not fitted but instead the function returns the

model file and the data/initial values needed to fit the model outside of mvgam.

return_model_data
logical. If TRUE, the list of data needed to fit the model is returned, along with
initial values for smooth and AR parameters, once the model is fitted. Helpful
for users who wish to modify the model file to add other stochastic elements.
Default is FALSE unless run_model == FALSE.

residuals logical. Whether to compute series-level randomized quantile residuals. De-
fault is TRUE. Set to FALSE to save time and reduce object size (can add later
using add_residuals).

Other arguments to pass to mvgam

Details

Joint Species Distribution Models allow for responses of multiple species to be learned hierarchi-
cally, whereby responses to environmental variables in formula can be partially pooled and any
latent, unmodelled residual associations can also be learned. In mvgam, both of these effects can
be modelled with the full power of latent factor Hierarchical GAMs, providing unmatched flexibil-
ity to model full communities of species. When calling jsdgam, an initial State-Space model using
trend = 'None' is set up and then modified to include the latent factors and their linear predictors.
Consequently, you can inspect priors for these models using get_mvgam_priors by supplying the
relevant formula, factor_formula, data and family arguments and keeping the default trend =
"None'.

In a JSDGAM, the expectation of response Y;; is modelled with

9(piz) = Xif + uib;,

where ¢(.) is a known link function, X is a design matrix of linear predictors (with associated
B coefficients), u are ny,-variate latent factors (1, «Ngpecies) and 8; are species-specific loadings
on the latent factors, respectively. The design matrix X and (coefficients are constructed and
modelled using formula and can contain any of mvgam’s predictor effects, including random in-
tercepts and slopes, multidimensional penalized smooths, GP effects etc... The factor loadings 6;
are constrained for identifiability but can be used to reconstruct an estimate of the species’ residual
variance-covariance matrix using ©©’ (see the example below and residual_cor() for details).
The latent factors are further modelled using:

Uz ~ Normal(QiBfactora 1)

where the second design matrix () and associated B¢4.tor coefficients are constructed and modelled
using factor_formula. Again, the effects that make up this linear predictor can contain any of
mvgam’s allowed predictor effects, providing enormous flexibility for modelling species’ communi-
ties.

jsdgam 49

Value

A list object of class mvgam containing model output, the text representation of the model file, the
mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth
residuals for each species and key information needed for other functions in the package. See
mvgam-class for details. Use methods(class = "mvgam”) for an overview on available methods

Author(s)
Nicholas J Clark

References

Nicholas J Clark & Konstans Wells (2023). Dynamic generalised additive models (DGAMs) for
forecasting discrete ecological time series. Methods in Ecology and Evolution. 14:3, 771-784.

David I Warton, F Guillaume Blanchet, Robert B O’Hara, Otso Ovaskainen, Sara Taskinen, Steven

C Walker & Francis KC Hui (2015). So many variables: joint modeling in community ecology.
Trends in Ecology & Evolution 30:12, 766-779.

See Also

mvgam(), residual_cor()

Examples

#
Example 1: Basic JSDGAM with Portal Data
#

Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
formula = captures ~
Fixed effects of NDVI and mintemp, row effect as a GP of time
ndvi_mal2:series + mintemp:series + gp(time, k = 15),
factor_formula = ~ -1,
data = portal_data,
unit = time,
species = series,

family = poisson(),
n_lv = 2,

silent = 2,

chains = 2

)

Plot covariate effects
library(ggplot2); theme_set(theme_bw())
plot_predictions(

mod,

condition = c('ndvi_mal2', 'series', 'series')

)

50

jsdgam

plot_predictions(
mod,
condition = c('mintemp', 'series', 'series')

)

A residual correlation plot
plot(residual_cor(mod))

An ordination biplot can also be constructed

from the factor scores and their loadings

if(requireNamespace('ggrepel', quietly = TRUE)){
ordinate(mod, alpha = 0.7)

}

#
Example 2: Advanced JSDGAM with Spatial Predictors
#

Simulate latent count data for 500 spatial locations and 10 species
set.seed(0)

N_points <- 500

N_species <- 10

Species-level intercepts (on the log scale)
alphas <- runif(N_species, 2, 2.25)

Simulate a covariate and species-level responses to it
temperature <- rnorm(N_points)
betas <- runif(N_species, -0.5, 0.5)

Simulate points uniformly over a space
lon <- runif(N_points, min = 150, max = 155)
lat <- runif(N_points, min = -20, max = -19)

Set up spatial basis functions as a tensor product of lat and lon
sm <- mgcv: :smoothCon(

mgcv::te(lon, lat, k = 5),

data = data.frame(lon, lat),

knots = NULL
YLL1]]

The design matrix for this smooth is in the 'X' slot
des_mat <- sm$X
dim(des_mat)

Function to generate a random covariance matrix where all variables
have unit variance (i.e. diagonals are all 1)
random_Sigma = function(N){
L_Omega <- matrix(@, N, N);
L_Omegall, 11 <- 1;
for (i in 2 : N) {
bound <- 1;
for (7 in 1 : (1 - 1)) {

jsdgam 51

L_Omegali, j] <- runif(1, -sqrt(bound), sqrt(bound));
bound <- bound - L_Omegali, jl * 2;

}

L_Omegali, i] <- sqgrt(bound);

}
Sigma <- L_Omega %*% t(L_Omega);
return(Sigma)

3

Simulate a variance-covariance matrix for the correlations among
basis coefficients
Sigma <- random_Sigma(N = NCOL(des_mat))

Now simulate the species-level basis coefficients hierarchically, where
spatial basis function correlations are a convex sum of a base correlation
matrix and a species-level correlation matrix
basis_coefs <- matrix(NA, nrow = N_species, ncol = NCOL(Sigma))
base_field <- mgcv::rmvn(1, mu = rep(@, NCOL(Sigma)), V = Sigma)
for(t in 1:N_species){

corOmega <- (cov2cor(Sigma) * 0.7) +

(0.3 * cov2cor(random_Sigma(N = NCOL(des_mat))))

basis_coefs[t,] <- mgcv::rmvn(1, mu = rep(@, NCOL(Sigma)), V = corOmega)

3

Simulate the latent spatial processes
st_process <- do.call(rbind, lapply(seq_len(N_species), function(t){
data.frame(

lat = lat,
lon = lon,
species = paste@('species_', t),

temperature = temperature,
process = alphas[t] +
betas[t] * temperature +
des_mat %*% basis_coefs[t,]
)
1))

Now take noisy observations at some of the points (60)
obs_points <- sample(1:N_points, size = 60, replace = FALSE)
obs_points <- data.frame(

lat = lat[obs_points],

lon = lon[obs_points],

site = 1:60
)

Keep only the process data at these points
st_process %>%
dplyr::inner_join(obs_points, by = c('lat', 'lon')) %>%
now take noisy Poisson observations of the process
dplyr::mutate(count = rpois(NROW(.), lambda = exp(process))) %>%
dplyr::mutate(species = factor(
species,
levels = paste@('species

1:N_species)

-

52

)) %>%
dplyr::group_by(lat, lon) -> dat

View the count distributions for each species
ggplot(dat, aes(x = count)) +

geom_histogram() +

facet_wrap(~ species, scales = 'free')

ggplot(dat, aes(x = lon, y = lat, col = log(count + 1))) +
geom_point(size = 2.25) +
facet_wrap(~ species, scales = 'free') +
scale_color_viridis_c()

Inspect default priors for a joint species model with three spatial factors
priors <- get_mvgam_priors(
formula = count ~
Environmental model includes random slopes for
a linear effect of temperature
s(species, bs = ' by = temperature),

1

re-,

Each factor estimates a different nonlinear spatial process, using
'by = trend' as in other mvgam State-Space models

factor_formula = ~ gp(lon, lat, k = 6, by = trend) - 1,

n_lv = 3,

The data and grouping variables
data = dat,

unit = site,

species = species,

Poisson observations
family = poisson()

)

head(priors)

Fit a JSDM that estimates hierarchical temperature responses
and that uses three latent spatial factors
mod <- jsdgam(
formula = count ~
Environmental model includes random slopes for a
linear effect of temperature

1 1

s(species, bs = 're', by = temperature),

Each factor estimates a different nonlinear spatial process, using
'by = trend' as in other mvgam State-Space models

factor_formula = ~ gp(lon, lat, k = 6, by = trend) - 1,

n_lv = 3,

Change default priors for fixed random effect variances and

jsdgam

jsdgam 53

factor GP marginal deviations to standard normal

priors = c(
prior(std_normal(), class = sigma_raw),
prior(std_normal(), class = “alpha_gp_trend(lon, lat):trendtrendl”),
prior(std_normal(), class = “alpha_gp_trend(lon, lat):trendtrend2”),
prior(std_normal(), class = “alpha_gp_trend(lon, lat):trendtrend3™)

),

The data and the grouping variables
data = dat,

unit = site,

species = species,

Poisson observations
family = poisson(),

chains = 2,
silent = 2
)
__
Model Visualization and Diagnostics
__

Plot the implicit species-level intercept estimates
plot_predictions(mod, condition = 'species', type = 'link')

Plot species' hierarchical responses to temperature
plot_predictions(

mod,
condition = c('temperature', 'species', 'species'),
type = 'link’

)

Plot posterior median estimates of the latent spatial factors
plot(mod, type = 'smooths', trend_effects = TRUE)

Or using gratia, if you have it installed
if(requireNamespace('gratia', quietly = TRUE)){

gratia::draw(mod, trend_effects = TRUE, dist = @)
3

Plot species' randomized quantile residual distributions
as a function of latitude

pp_check(
mod,
type = 'resid_ribbon_grouped',
group = 'species',
x = 'lat',
ndraws = 200
)
__

Residual Correlation Analysis

54

jsdgam

Calculate residual spatial correlations
post_cors <- residual_cor(mod)
names(post_cors)

Look at lower and upper credible interval estimates for
some of the estimated correlations

post_cors$cor[1:5, 1:5]

post_cors$cor_upper[1:5, 1:5]

post_cors$cor_lower[1:5, 1:5]

Plot of the posterior median correlations for those estimated
to be non-zero
plot(post_cors, cluster = TRUE)

An ordination biplot can also be constructed

from the factor scores and their loadings

if(requireNamespace('ggrepel', quietly = TRUE)){
ordinate(mod)

Posterior predictive checks and ELPD-LOO can ascertain model fit

pp_check(
mod,
type = "pit_ecdf_grouped”,
group = "species”,
ndraws = 200
)
loo(mod)

Forecast log(counts) for entire region (site value doesn't matter as long
as each spatial location has a different and unique site identifier);
note this calculation takes a few minutes because of the need to calculate
draws from the stochastic latent factors
newdata <- st_process %>%
dplyr::mutate(species = factor(
species,
levels = paste@('species_', 1:N_species)
)) %>%
dplyr::group_by(lat, lon) %>%
dplyr::mutate(site = dplyr::cur_group_id()) %>%
dplyr: :ungroup()
preds <- predict(mod, newdata = newdata)

Plot the median log(count) predictions on a grid

newdata$log_count <- preds[,1]

ggplot(newdata, aes(x = lon, y = lat, col = log_count)) +
geom_point(size = 1.5) +

Ifo_cv.mvgam

55

facet_wrap(~ species, scales = 'free') +
scale_color_viridis_c() +
theme_classic()

1fo_cv.mvgam

Approximate leave-future-out cross-validation of fitted mvgam objects

Description

Approximate leave-future-out cross-validation of fitted mvgam objects

Usage

1fo_cv(object,

)

S3 method for class 'mvgam'

1fo_cv(
object,
data,
min_t,

fc_horizon =

1,

pareto_k_threshold = 0.7,

silent =

Arguments

object

data

min_t

fc_horizon

1,

list object of class mvgam. See mvgam()
Ignored

A dataframe or list containing the model response variable and covariates
required by the GAM formula. Should include columns: ’series’ (character
or factor index of the series IDs) ’time’ (numeric index of the time point for
each observation). Any other variables to be included in the linear predictor of
formula must also be present

Integer specifying the minimum training time required before making predic-
tions from the data. Default is either the 30th timepoint in the observational
data, or whatever training time allows for at least 10 Ifo-cv calculations, if pos-
sible. This value is essentially arbitrary so it is highly recommended to change
it to something that is more suitable to the data and models being evaluated.

Integer specifying the number of time steps ahead for evaluating forecasts

pareto_k_threshold

Proportion specifying the threshold over which the Pareto shape parameter is
considered unstable, triggering a model refit. Default is @.7

56 Ifo_cv.mvgam

silent Verbosity level between @ and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh =@ to
turn this off as well. If using backend = "rstan” you can also set open_progress
= FALSE to prevent opening additional progress bars.

Details

Approximate leave-future-out cross-validation uses an expanding training window scheme to eval-
uate a model on its forecasting ability. The steps used in this function mirror those laid out in the Ifo
vignette from the loo package, written by Paul Biirkner, Jonah Gabry, Aki Vehtari. First, we refit
the model using the first min_t observations to perform a single exact fc_horizon-ahead forecast
step. This forecast is evaluated against the min_t + fc_horizon out of sample observations using
the Expected Log Predictive Density (ELPD). Next, we approximate each successive round of ex-
panding window forecasts by moving forward one step at a time for i in 1:N_evaluations and
re-weighting draws from the model’s posterior predictive distribution using Pareto Smoothed Im-
portance Sampling (PSIS). In each iteration i, PSIS weights are obtained for the next observation
that would have been included in the model if we had re-fit (i.e. the last observation that would
have been in the training data, or min_t + i). If these importance ratios are stable, we consider the
approximation adequate and use the re-weighted posterior’s forecast for evaluating the next holdout
set of testing observations ((min_t + i+ 1):(min_t + i + fc_horizon)). At some point the im-
portance ratio variability will become too large and importance sampling will fail. This is indicated
by the estimated shape parameter k of the generalized Pareto distribution crossing a certain thresh-
old pareto_k_threshold. Only then do we refit the model using all of the observations up to the
time of the failure. We then restart the process and iterate forward until the next refit is triggered
(Biirkner et al. 2020).

Value
A list of class mvgam_1fo containing the approximate ELPD scores, the Pareto-k shape values
and ’the specified pareto_k_threshold

Author(s)
Nicholas J Clark

References

Paul-Christian Biirkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-out cross-
validation for Bayesian time series models Journal of Statistical Computation and Simulation.
90:14, 2499-2523.

See Also

forecast, score, compare_mvgams

Examples

Simulate from a Poisson-AR2 model with a seasonal smooth
set.seed(100)

https://mc-stan.org/loo/articles/loo2-lfo.html
https://mc-stan.org/loo/articles/loo2-lfo.html

Ifo_cv.mvgam

dat <- sim_mvgam(T = 75,
n_series = 1,
prop_trend = 0.75,
trend_model = 'AR2',
family = poisson())

Plot the time series

plot_mvgam_series(data = dat$data_train,
newdata = dat$data_test,
series = 1)

Fit an appropriate model

mod_ar2 <- mvgam(y ~ s(season, bs
trend_model = AR(p
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
chains = 2
silent = 2

'cc', k = 6),
2)!

)
Fit a less appropriate model
mod_rw <- mvgam(y ~ s(season, bs = 'cc', k = 6),
trend_model = RW(),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,

chains = 2,
silent = 2)

Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)

fc_rw <- forecast(mod_rw)

score_ar2 <- score(fc_ar2, score = 'drps')

score_rw <- score(fc_rw, score = 'drps')
sum(score_ar2$series_1$score)

sum(score_rw$series_1$score)

Now use approximate leave-future-out CV to compare

rolling forecasts; start at time point 40 to reduce

computational time and to ensure enough data is available
for estimating model parameters

1fo_ar2 <- 1fo_cv(mod_ar2,

min_t = 40,
fc_horizon = 3,
silent = 2)
1fo_rw <- 1fo_cv(mod_rw,
min_t = 40,
fc_horizon = 3,
silent = 2)

Plot Pareto-K values and ELPD estimates
plot(lfo_ar2)
plot(lfo_rw)

57

58 logLik.mvgam

Proportion of timepoints in which AR2 model gives better forecasts
length(which((1fo_ar2$elpds - 1lfo_rw$elpds) > 0)) /
length(1lfo_ar2$elpds)

A higher total ELPD is preferred
1fo_ar2$sum_ELPD
1fo_rw$sum_ELPD

loglLik.mvgam Compute pointwise Log-Likelihoods from fitted mvgam objects

Description

Compute pointwise Log-Likelihoods from fitted mvgam objects

Usage
S3 method for class 'mvgam'
loglik(object, linpreds, newdata, family_pars, include_forecast = TRUE, ...)
Arguments
object list object of class mvgam or jsdgam
linpreds Optional matrix of linear predictor draws to use for calculating pointwise log-
likelihoods.
newdata Optional data.frame or list object specifying which series each column in
linpreds belongs to. If linpreds is supplied, then newdata must also be sup-
plied.
family_pars Optional list containing posterior draws of family-specific parameters (i.e.

shape, scale or overdispersion parameters). Required if linpreds and newdata
are supplied.

include_forecast
Logical. If newdata were fed to the model to compute forecasts, should the
log-likelihood draws for these observations also be returned. Defaults to TRUE.

Ignored

Value

A matrix of dimension n_samples x n_observations containing the pointwise log-likelihood
draws for all observations in newdata. If no newdata is supplied, log-likelihood draws are returned
for all observations that were originally fed to the model (training observations and, if supplied to
the original model via the newdata argument in mvgam, testing observations).

Author(s)
Nicholas J Clark

loo.mvgam 59

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(

n_series = 1,

trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
data = simdat$data_train,
chains = 2,
silent = 2
)

Extract log-likelihood values
11s <- loglLik(mod)
str(lls)

loo.mvgam LOO information criteria for mvgam models

Description

Extract the LOOIC (leave-one-out information criterion) using 1oo: : 10o().

Usage

S3 method for class 'mvgam'
loo(x, incl_dynamics = FALSE, ...)

S3 method for class 'mvgam'

loo_compare(x, ..., model_names = NULL, incl_dynamics = FALSE)
Arguments
X Object of class mvgam

incl_dynamics Deprecated and currently ignored
More mvgam objects

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names

60 loo.mvgam

Details

When comparing two (or more) fitted mvgam models, we can estimate the difference in their in-
sample predictive accuracies using the Expected Log Predictive Density (ELPD). This metric can
be approximated using Pareto Smoothed Importance Sampling (PSIS), which re-weights posterior
draws to approximate predictions for a datapoint had it not been included in the original model fit
(i.e. leave-one-out cross-validation).

See 1oo::1oo() and loo::1loo_compare() for further details on how this importance sampling
works.

Note: In-sample predictive metrics such as PSIS-LOO can sometimes be overly optimistic for
models that include process error components (e.g. those with trend_model, trend_formula, or
factor_formula). Consider using out-of-sample evaluations for further scrutiny (see forecast.mvgam,
score.mvgam_forecast, 1fo_cv).

Value

For 1oo.mvgam, an object of class psis_loo (see 1oo: : 1oo() for details). For loo_compare.mvgam,
an object of class compare.loo (see 1oo: : loo_compare() for details).

Author(s)
Nicholas J Clark

Examples

Simulate 4 time series with hierarchical seasonality
and independent AR1 dynamic processes

set.seed(111)

simdat <- sim_mvgam(
seasonality = 'hierarchical',
trend_model = AR(),
family = gaussian()

)

Fit a model with shared seasonality
mod1 <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
data = rbind(simdat$data_train, simdat$data_test),
family = gaussian(),
chains = 2,
silent = 2
)

conditional_effects(modl)

mc.cores.def <- getOption('mc.cores')
options(mc.cores = 1)
loo(mod1)

loo.mvgam

Fit a model with hierarchical seasonality
mod2 <- update(

mod1,
formula = y ~ s(season, bs = 'cc', k = 6) +
s(season, series, bs = 'fs', xt = list(bs = 'cc'), k
chains = 2,
silent = 2

)

conditional_effects(mod2)
loo(mod2)

Add AR1 dynamic errors to mod2
mod3 <- update(

mod2,

trend_model = AR(),
chains = 2,

silent = 2

)

conditional_effects(mod3)
plot(mod3, type = 'trend')
loo(mod3)

loo_compare(mod1, mod2, mod3)
options(mc.cores = mc.cores.def)

__
Compare forecast abilities using LFO-CV

__
1fo_mod2 <- 1fo_cv(mod2, min_t = 92)

1fo_mod3 <- 1fo_cv(mod3, min_t = 92)

Plot forecast ELPD differences
plot(
y = 1fo_mod2$elpds - 1fo_mod3$elpds,
x = 1fo_mod2%$eval_timepoints,

pch = 16,
ylab = 'ELPD_mod2 - ELPD_mod3',
xlab = 'Evaluation timepoint'

)

abline(h = @, 1ty = 'dashed')

61

62 Iv_correlations

lv_correlations Calculate trend correlations based on latent factor loadings for
mvgam models

Description
This function uses factor loadings from a fitted dynamic factor mvgam model to calculate temporal
correlations among series’ trends.

Usage

lv_correlations(object)

Arguments
object list object of class mvgam that used latent factors, either with use_lv = TRUE
or by supplying a trend_map. See mvgam() for details and for an example.
Details

Although this function will still work, it is now recommended to use residual_cor() to obtain
residual correlation information in a more user-friendly format that allows for a deeper investigation
of relationships among the time series.

Value

A list object containing the mean posterior correlations and the full array of posterior correlations.

See Also

residual_cor(), plot.mvgam_residcor()

Examples

Fit a model that uses two AR(1) dynamic factors to model
the temporal dynamics of the four rodent species in the portal_data

mod <- mvgam(
captures ~ series,
trend_model = AR(),
use_lv = TRUE,
n_lv = 2,
data = portal_data,
chains = 2,
silent = 2

Plot the two dynamic factors

mcmc_plot.mvgam 63

plot(mod, type = 'factors')

Calculate correlations among the series
lvcors <- lv_correlations(mod)
names(lvcors)

lapply(lvcors, class)

Recommended: use residual_cor() instead
lvcors <- residual_cor(mod)

names(lvcors)

lvcors$cor

Plot credible correlations as a matrix
plot(lvcors, cluster = TRUE)

mcmc_plot.mvgam MCMC plots of mvgam parameters, as implemented in bayesplot

Description

Convenient way to call MCMC plotting functions implemented in the bayesplot package for mvgam
models

Usage

S3 method for class 'mvgam'
mcme_plot(

object,

type = "intervals”,

variable = NULL,

regex = FALSE,

use_alias = TRUE,

)
Arguments
object An R object typically of class brmsfit
type The type of the plot. Supported types are (as names) hist, dens, hist_by_chain,

dens_overlay, violin, intervals, areas, areas_ridges, combo, acf, acf_bar,
trace, trace_highlight, scatter, hex, pairs, violin, rhat, rhat_hist,
neff, neff_hist and nuts_energy. For an overview on the various plot types
see MCMC-overview.

64 model.frame.mvgam

variable Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names
with the more informative alias. Defaults to TRUE.

Additional arguments passed to the plotting functions. See MCMC-overview for
more details.

Value

A ggplot object that can be further customized using the ggplot2 package.

See Also

mvgam_draws for an overview of some of the shortcut strings that can be used for argument variable

Examples

simdat <- sim_mvgam(n_series = 1, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2)
mcme_plot(mod)
mcmc_plot(mod, type = 'neff_hist')

mcmc_plot(mod, variable = 'betas', type = 'areas')
mcme_plot(mod, variable = 'trend_params', type = 'combo')
model . frame.mvgam Extract model.frame from a fitted mvgam object
Description

Extract model.frame from a fitted mvgam object

Usage

S3 method for class 'mvgam'
model.frame(formula, trend_effects = FALSE, ...)

S3 method for class 'mvgam_prefit'
model.frame(formula, trend_effects = FALSE, ...)

monotonic 65

Arguments

formula a model formula or terms object or an R object.

trend_effects logical, return the model.frame from the observation model (if FALSE) or from
the underlying process model (if TRUE)

Ignored

Value

A matrix containing the fitted model frame

Author(s)
Nicholas J Clark

monotonic Monotonic splines in mvgam models

Description

Uses constructors from package splines2 to build monotonically increasing or decreasing splines.
Details also in Wang & Yan (2021).

Usage

S3 method for class 'moi.smooth.spec
smooth.construct(object, data, knots)
S3 method for class 'mod.smooth.spec'
smooth.construct(object, data, knots)

S3 method for class 'moi.smooth'
Predict.matrix(object, data)

S3 method for class 'mod.smooth'
Predict.matrix(object, data)

Arguments
object A smooth specification object, usually generated by a term s(x, bs = "moi”,
...)ors(x, bs="mod", ...)
data a list containing just the data (including any by variable) required by this term,
with names corresponding to object$term (and object$by). The by variable
is the last element.
knots a list containing any knots supplied for basis setup — in same order and with

same names as data. Can be NULL. See details for further information.

66 monotonic

Details

The constructor is not normally called directly, but is rather used internally by mvgam. If they are
not supplied then the knots of the spline are placed evenly throughout the covariate values to which
the term refers: For example, if fitting 101 data with an 11 knot spline of x then there would be a
knot at every 10th (ordered) x value. The spline is an implementation of the closed-form I-spline
basis based on the recursion formula given by Ramsay (1988), in which the basis coefficients must
be constrained to either be non-negative (for monotonically increasing functions) or non-positive
(monotonically decreasing)

Take note that when using either monotonic basis, the number of basis functions k must be sup-
plied as an even integer due to the manner in which monotonic basis functions are constructed

Value

An object of class "moi.smooth” or "mod.smooth”. In addition to the usual elements of a smooth
class documented under smooth.construct, this object will contain a slot called boundary that
defines the endpoints beyond which the spline will begin extrapolating (extrapolation is flat due to
the first order penalty placed on the smooth function)

Note

This constructor will result in a valid smooth if using a call to gam or bam, however the resulting
functions will not be guaranteed to be monotonic because constraints on basis coefficients will not
be enforced

Author(s)
Nicholas J Clark

References

Wang, Wenjie, and Jun Yan. "Shape-Restricted Regression Splines with R Package splines2." Jour-
nal of Data Science 19.3 (2021).

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425-441.

Examples

Simulate data from a monotonically increasing function
set.seed(123123)

X <= runif(80) * 4 -1

x <= sort(x)

f <-exp(4 *x x) / (1 + exp(4 * x))
y <= f + rnorm(80) * 0.1

plot(x, y)

A standard TRPS smooth doesn't capture monotonicity
library(mgcv)

monotonic

mod_data <- data.frame(y =y, x = x)
mod <- gam(

y ~ s(x, k =16),

data = mod_data,

family = gaussian()

)

library(marginaleffects)
plot_predictions(
mod,
by = 'x',
newdata = data.frame(
x = seq(min(x) - 0.5, max(x) + 0.5, length.out = 100)
),
points = 0.5
)

Using the 'moi' basis in mvgam rectifies this
mod_data$time <- 1:NROW(mod_data)
mod2 <- mvgam(

y ~ s(x, bs = 'moi', k = 18),

data = mod_data,

family = gaussian(),

chains = 2,
silent = 2
)
plot_predictions(
mod2,
by = 'x',

newdata = data.frame(
x = seq(min(x) - 0.5, max(x) + 0.5, length.out = 100)

)?
points = 0.5
)

plot(mod2, type = 'smooth', realisations = TRUE)

1 1

H+

'by' terms that produce a different smooth for each level of the
factor are also allowed

by

H+

x

<- runif(80) * 4 -1
<- sort(x)

x

Two different monotonic smooths, one for each factor level
f <-exp(4 x x) / (1 + exp(4 * x))
f2 <= exp(3.5 * x) / (1 + exp(3 * x))
fac <- c(rep('a', 80), rep('b', 80))
y <= c(
f + rnorm(80) * 0.1,
f2 + rnorm(80) * 0.2
)

68

plot(x, y[1:80])
plot(x, y[81:160])

Gather all data into a data.frame, including the factor 'by' variable

mod_data <- data.frame(y, x, fac = as.factor(fac))
mod_data$time <- 1:NROW(mod_data)

Fit a model with different smooths per factor level
mod <- mvgam(

y ~ s(x, bs = 'moi', by = fac, k = 8),

data = mod_data,

family = gaussian(),

chains = 2,

silent = 2

)

Visualise the different monotonic functions
plot_predictions(

mod,

condition = c('x"', 'fac', 'fac'),

points = 0.5
)

plot(mod, type = 'smooth', realisations = TRUE)
First derivatives (on the link scale) should never be

negative for either factor level
(derivs <- slopes(

mod,

variables = 'x',
by = ¢('x", 'fac'),
type = 'link'

)

all(derivs$estimate > @)

mvgam

mvgam

ries

Fit a Bayesian Dynamic GAM to Univariate or Multivariate Time Se-

Description

This function estimates the posterior distribution for Generalised Additive Models (GAMs) that
can include smooth spline functions, specified in the GAM formula, as well as latent temporal

processes, specified by trend_model.

Further modelling options include State-Space representations to allow covariates and dynamic
processes to occur on the latent ’State’ level while also capturing observation-level effects. Prior
specifications are flexible and explicitly encourage users to apply prior distributions that actually

reflect their beliefs.

mvgam

69

In addition, model fits can easily be assessed and compared with posterior predictive checks, fore-

cast comparisons and leave-one-out / leave-future-out cross-validation.

Usage

mvgam(

formula,

trend_formula,

knots,

trend_knots,

trend_model = "None"”,

noncentred = FALSE,

family = poisson(),

share_obs_params = FALSE,

data,

newdata,

use_lv = FALSE,

n_lv,

trend_map,

priors,

run_model = TRUE,

prior_simulation = FALSE,

residuals = TRUE,

return_model_data = FALSE,

backend = getOption("brms.backend”, "cmdstanr”),
algorithm = getOption("brms.algorithm”, "sampling"),
control = list(max_treedepth = 10, adapt_delta = 0.8),
chains = 4,

burnin = 500,

samples = 500,

thin = 1,

parallel = TRUE,
threads = 1,
save_all_pars = FALSE,
silent =1,

autoformat = TRUE,
refit = FALSE,
1fo = FALSE,

Arguments

formula

A formula object specifying the GAM observation model formula. These are

exactly like the formula for a GLM except that smooth terms, s(), te(), ti(),
t2(), as well as time-varying dynamic() terms, nonparametric gp() terms and
offsets using of fset (), can be added to the right hand side to specify that the
linear predictor depends on smooth functions of predictors (or linear functionals

of these).

70

trend_formula

knots

trend_knots

trend_model

noncentred

family

mvgam

In nmix () family models, the formula is used to set up a linear predictor for
the detection probability. Details of the formula syntax used by mvgam can be
found in mvgam_formulae

An optional formula object specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture
process model evolution separately from the observation model.

Important notes:

* Should not have a response variable specified on the left-hand side (e.g., ~
season + s(year))

* Use trend instead of series for effects that vary across time series

¢ Only available for RW(), AR() and VAR() trend models

* In nmix() family models, sets up linear predictor for latent abundance

* Consider dropping one intercept using - 1 convention to avoid estimation
challenges

An optional 1ist containing user specified knot values for basis construction.
For most bases the user simply supplies the knots to be used, which must match
up with the k value supplied. Different terms can use different numbers of knots,
unless they share a covariate.

As for knots above, this is an optional 1ist of knot values for smooth functions
within the trend_formula.
character or function specifying the time series dynamics for the latent trend.
Available options:

* None: No latent trend component (GAM component only, like gam)

* ZMVN or ZMVN(): Zero-Mean Multivariate Normal (Stan only)

e 'RW' or RW(): Random Walk

* "AR1', 'AR2"', "AR3"' or AR(p =1, 2, 3): Autoregressive models

* 'CAR1' or CAR(p = 1): Continuous-time AR (Ornstein—Uhlenbeck process)

* '"VAR1' or VAR(): Vector Autoregressive (Stan only)

* 'PWlogistic’', 'PWlinear’' or PW(): Piecewise trends (Stan only)

* '"GP' or GP(): Gaussian Process with squared exponential kernel (Stan

only)

Additional features:

* Moving average and/or correlated process error terms available for most

types (e.g., RW(cor = TRUE) for multivariate Random Walk)

* Hierarchical correlations possible for structured data

* See mvgam_trends for details and ZMVN() for examples
logical. Use non-centred parameterisation for autoregressive trend models?
Can improve efficiency by avoiding degeneracies in latent dynamic random ef-
fects estimation. Benefits vary by model - highly informative data may perform
worse with this option. Available for RW(), AR(), CAR(), or trend = 'None'
with trend_formula. Not available for moving average or correlated error mod-
els.
family specifying the exponential observation family for the series.
Supported families:

mvgam 71

e gaussian(): Real-valued data

* betar(): Proportional data on (@, 1)

* lognormal(): Non-negative real-valued data
e student_t(): Real-valued data

* Gamma(): Non-negative real-valued data

* bernoulli(): Binary data

¢ poisson(): Count data (default)

* nb(): Overdispersed count data

* binomial(): Count data with imperfect detection when number of trials is
known (use cbind() to bind observations and trials)

* beta_binomial(): As binomial() but allows for overdispersion

* nmix(): Count data with imperfect detection when number of trials is un-
known (State-Space N-Mixture model with Poisson latent states and Bino-
mial observations)

See mvgam_families for more details.

share_obs_params
logical. If TRUE and the family has additional family-specific observation
parameters (e.g., variance components, dispersion parameters), these will be
shared across all outcome variables. Useful when multiple outcomes share prop-
erties. Default is FALSE.

data A dataframe or list containing the model response variable and covariates
required by the GAM formula and optional trend_formula.

Required columns for most models:

* series: A factor index of the series IDs (number of levels should equal
number of unique series labels)

* time: numeric or integer index of time points. For most dynamic trend
types, time should be measured in discrete, regularly spaced intervals (i.e.,
c(1, 2, 3, ...)). Irregular spacing is allowed for trend_model = CAR(1),
but zero intervals are adjusted to 1e-12 to prevent sampling errors.

Special cases:
* Models with hierarchical temporal correlation (e.g., AR(gr = region, subgr
= species)) should NOT include a series identifier

* Models without temporal dynamics (trend_model = 'None' or trend_model
= ZMVN()) don’t require a time variable

newdata Optional dataframe or list of test data containing the same variables as in
data. If included, observations in variable y will be set to NA when fitting the
model so that posterior simulations can be obtained.

use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-
duced dimension format. Only available for RW(), AR() and GP() trend models.
Default is FALSE. See 1v_correlations for examples.

n_lv integer specifying the number of latent dynamic factors to use if use_lv ==
TRUE. Cannot exceed n_series. Default is min(2, floor(n_series / 2)).

72

mvgam

trend_map Optional data.frame specifying which series should depend on which latent
trends. Enables multiple series to depend on the same latent trend process with
different observation processes.

Required structure:
* Column series: Single unique entry for each series (matching factor levels
in data)
* Column trend: Integer values indicating which trend each series depends
on
Notes:
* Sets up latent factor model by enabling use_1v = TRUE
* Process model intercept is NOT automatically suppressed
* Not yet supported for continuous time models (CAR())

priors An optional data. frame with prior definitions or, preferably, a vector of brmsprior
objects (see prior()). See get_mvgam_priors() and Details for more infor-
mation.

run_model logical. If FALSE, the model is not fitted but instead the function returns the

model file and the data/initial values needed to fit the model outside of mvgam.
prior_simulation

logical. If TRUE, no observations are fed to the model, and instead simulations

from prior distributions are returned.

residuals logical. Whether to compute series-level randomized quantile residuals. De-
fault is TRUE. Set to FALSE to save time and reduce object size (can add later
using add_residuals).

return_model_data
logical. If TRUE, the list of data needed to fit the model is returned, along with
initial values for smooth and AR parameters, once the model is fitted. Helpful
for users who wish to modify the model file to add other stochastic elements.
Default is FALSE unless run_model == FALSE.

backend Character string naming the package for Stan model fitting. Options are "cmdstanr
(default) or "rstan”. Can be set globally via "brms.backend” option. See
https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstanr/ for details.

n

algorithm Character string naming the estimation approach:
e "sampling": MCMC (default)
* "meanfield”: Variational inference with factorized normal distributions
e "fullrank”: Variational inference with multivariate normal distribution
* "laplace”: Laplace approximation (cmdstanr only)
* "pathfinder”: Pathfinder algorithm (cmdstanr only)
Can be set globally via "brms.algorithm” option. Limited testing suggests

"meanfield” performs best among non-MCMC approximations for dynamic
GAMs.

control Named 1list for controlling sampler behaviour. Valid elements include max_treedepth,
adapt_deltaand init.

chains integer specifying the number of parallel chains for the model. Ignored for
variational inference algorithms.

mvgam 73

burnin integer specifying the number of warmup iterations to tune sampling algo-
rithms. Ignored for variational inference algorithms.

samples integer specifying the number of post-warmup iterations for sampling the pos-
terior distribution.

thin Thinning interval for monitors. Ignored for variational inference algorithms.

parallel logical specifying whether to use multiple cores for parallel MCMC simula-

tion. If TRUE, uses min(c(chains, parallel: :detectCores() - 1)) cores.

threads integer. Experimental option for within-chain parallelisation in Stan using
reduce_sum. Recommended only for experienced Stan users with slow mod-
els. Currently works for all families except nmix() and when using Cmdstan
backend.

save_all_pars logical. Save draws from all variables defined in Stan’s parameters block.
Default is FALSE.

silent Verbosity level between @ and 2. If 1 (default), most informational messages
are suppressed. If 2, even more messages are suppressed. Sampling progress
is still printed - set refresh =@ to disable. For backend = "rstan”, also set
open_progress = FALSE to prevent additional progress bars.

autoformat logical. Use stanc parser to automatically format Stan code and check for
deprecations. For development purposes - leave as TRUE.

refit logical. Indicates whether this is a refit called using update.mvgam(). Users
should leave as FALSE.

1fo logical. Indicates whether this is part of Ifo_cv.mvgam call. Returns lighter
model version for speed. Users should leave as FALSE.

Further arguments passed to Stan:

* For backend = "rstan": passed to sampling() or vb()

* For backend = "cmdstanr": passed to cmdstanr: : sample, cmdstanr: :variational,
cmdstanr::laplace or cmdstanr: :pathfinder methods

Details

Dynamic GAMs are useful when we wish to predict future values from time series that show tem-
poral dependence but we do not want to rely on extrapolating from a smooth term (which can
sometimes lead to unpredictable and unrealistic behaviours). In addition, smooths can often try to
wiggle excessively to capture any autocorrelation that is present in a time series, which exacerbates
the problem of forecasting ahead.

As GAMs are very naturally viewed through a Bayesian lens, and we often must model time series
that show complex distributional features and missing data, parameters for mvgam models are
estimated in a Bayesian framework using Markov Chain Monte Carlo by default.

Getting Started Resources:

¢ General overview: vignette("mvgam_overview") and vignette("data_in_mvgam")
* Full list of vignettes: vignette(package = "mvgam”)
» Real-world examples: mvgam_use_cases

* Quick reference: mvgam cheatsheet

https://github.com/nicholasjclark/mvgam/raw/master/misc/mvgam_cheatsheet.pdf

74 mvgam

Value

A list object of class mvgam containing model output, the text representation of the model file,
the mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-
Smyth residuals for each series and key information needed for other functions in the package. See
mvgam-class for details. Use methods(class = "mvgam”) for an overview on available methods.

Model Specification Details

Formula Syntax: Details of the formula syntax used by mvgam can be found in mvgam_formulae.
Note that it is possible to supply an empty formula where there are no predictors or intercepts in
the observation model (i.e. y ~ @ or y ~ -1). In this case, an intercept-only observation model will
be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit
pure State-Space models where the variation in the dynamic trend controls the average expectation,
and/or where intercepts are non-identifiable (as in piecewise trends).

Families and Link Functions: Details of families supported by mvgam can be found in mvgam_families.

Trend Models: Details of latent error process models supported by mvgam can be found in
mvgam_trends.

Prior Specifications

Default priors for intercepts and any variance parameters are chosen to be vaguely informative, but
these should always be checked by the user. Prior distributions for most important model parameters
can be altered (see get_mvgam_priors() for details). Note that latent trends are estimated on the
link scale so choose priors accordingly.

However more control over the model specification can be accomplished by setting run_model =
FALSE and then editing the model code (found in the model_f1ile slot in the returned object) before
running the model using either rstan or cmdstanr. This is encouraged for complex modelling tasks.

Important: No priors are formally checked to ensure they are in the right syntax so it is up to the
user to ensure these are correct.

Model Components

Random Effects: For any smooth terms using the random effect basis (smooth. construct.re.smooth.spec),
a non-centred parameterisation is automatically employed to avoid degeneracies that are common

in hierarchical models. Note however that centred versions may perform better for series that are
particularly informative, so as with any foray into Bayesian modelling, it is worth building an under-

standing of the model’s assumptions and limitations by following a principled workflow. Also note

that models are parameterised using drop.unused.levels = FALSE in jagam to ensure predictions

can be made for all levels of the supplied factor variable.

Observation Level Parameters: When more than one series is included in data and an observation
family that contains more than one parameter is used, additional observation family parameters (i.e.
phi for nb() or sigma for gaussian()) are by default estimated independently for each series. But
if you wish for the series to share the same observation parameters, set share_obs_params = TRUE.

Model Diagnostics

Residuals: For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for
inspecting model diagnostics. If the fitted model is appropriate then Dunn-Smyth residuals will

mvgam 75

be standard normal in distribution and no autocorrelation will be evident. When a particular ob-
servation is missing, the residual is calculated by comparing independent draws from the model’s
posterior distribution.

Computational Backend

Using Stan: mvgam is primarily designed to use Hamiltonian Monte Carlo for parameter esti-
mation via the software Stan (using either the cmdstanr or rstan interface). There are great
advantages when using Stan over Gibbs / Metropolis Hastings samplers, which includes the option
to estimate nonlinear effects via Hilbert space approximate Gaussian Processes, the availability of a
variety of inference algorithms (i.e. variational inference, laplacian inference etc...) and capabilities
to enforce stationarity for complex Vector Autoregressions.

Because of the many advantages of Stan over JAGS, further development of the package will only
be applied to Stan. This includes the planned addition of more response distributions, plans to

handle zero-inflation, and plans to incorporate a greater variety of trend models. Users are strongly
encouraged to opt for Stan over JAGS in any proceeding workflows.

Recommended Workflow

How to Start: The mvgam cheatsheet is a good starting place if you are just learning to use the
package. It gives an overview of the package’s key functions and objects, as well as providing a
reasonable workflow that new users can follow.

Recommended Steps:

1. Data Preparation: Check that your data are in a suitable tidy format for mvgam modeling
(see the data formatting vignette for guidance)

2. Data Exploration: Inspect features of the data using plot_mvgam_series. Now is also a
good time to familiarise yourself with the package’s example workflows that are detailed in
the vignettes:

* Getting started vignette

* Shared latent states vignette

» Time-varying effects vignette

 State-Space models vignette

 "Fitting N-mixture models in mvgam"

» "Joint Species Distribution Models in mvgam"

* "Incorporating time-varying seasonality in forecast models"
» "Temporal autocorrelation in GAMs and the mvgam package"

3. Model Structure: Carefully think about how to structure linear predictor effects (i.e. smooth
terms using s(), te() or ti(), GPs using gp(), dynamic time-varying effects using dynamic(),
and parametric terms), latent temporal trend components (see mvgam_trends) and the appro-

priate observation family (see mvgam_families). Use get_mvgam_priors() to see default
prior distributions for stochastic parameters.

4. Prior Specification: Change default priors using appropriate prior knowledge (see prior()).
When using State-Space models with a trend_formula, pay particular attention to priors for
any variance parameters such as process errors and observation errors. Default priors on these
parameters are chosen to be vaguely informative and to avoid zero (using Inverse Gamma
priors), but more informative priors will often help with model efficiency and convergence.

https://arxiv.org/abs/2004.11408
https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2079648
https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2079648
https://github.com/nicholasjclark/mvgam/raw/master/misc/mvgam_cheatsheet.pdf
https://nicholasjclark.github.io/mvgam/articles/data_in_mvgam.html
https://nicholasjclark.github.io/mvgam/articles/mvgam_overview.html
https://nicholasjclark.github.io/mvgam/articles/shared_states.html
https://nicholasjclark.github.io/mvgam/articles/time_varying_effects.html
https://nicholasjclark.github.io/mvgam/articles/trend_formulas.html
https://nicholasjclark.github.io/mvgam/articles/nmixtures.html
https://nicholasjclark.github.io/mvgam/reference/jsdgam.html
https://ecogambler.netlify.app/blog/time-varying-seasonality/
https://ecogambler.netlify.app/blog/autocorrelated-gams/

76 mvgam

5. Model Fitting: Fit the model using either Hamiltonian Monte Carlo or an approximation algo-
rithm (i.e. change the backend argument) and use summary.mvgam(), conditional_effects.mvgam(),
mcme_plot.mvgam(), pp_check.mvgam(), pairs.mvgam() and plot.mvgam() to inspect /
interrogate the model.

6. Model Comparison: Update the model as needed and use loo_compare.mvgam() for in-
sample model comparisons, or alternatively use forecast.mvgam(), 1fo_cv.mvgam() and
score.mvgam_forecast () to compare models based on out-of-sample forecasts (see the fore-
cast evaluation vignette for guidance).

7. Inference and Prediction: When satisfied with the model structure, use predict.mvgam(),
plot_predictions() and/or plot_slopes() for more targeted simulation-based inferences
(see "How to interpret and report nonlinear effects from Generalized Additive Models" for
some guidance on interpreting GAMs). For time series models, use hindcast.mvgam(),
fitted.mvgam(), augment.mvgam() and forecast.mvgam() to inspect posterior hindcast
/ forecast distributions.

8. Documentation: Use how_to_cite() to obtain a scaffold methods section (with full refer-
ences) to begin describing this model in scientific publications.
Author(s)
Nicholas J Clark

References

Nicholas J Clark & Konstans Wells (2023). Dynamic generalised additive models (DGAMs) for
forecasting discrete ecological time series. Methods in Ecology and Evolution. 14:3, 771-784.

Nicholas J Clark, SK Morgan Ernest, Henry Senyondo, Juniper Simonis, Ethan P White, Glenda M
Yenni, KANK Karunarathna (2025). Beyond single-species models: leveraging multispecies fore-
casts to navigate the dynamics of ecological predictability. PeerJ. 13:e18929 https://doi.org/10.7717/peerj.18929

See Also

jagam(), gam(), gam.models, get_mvgam_priors(), jsdgam(), hindcast.mvgam(), forecast.mvgam(),
predict.mvgam()

Examples

#
Basic Multi-Series Time Series Modeling
#

Simulate three time series that have shared seasonal dynamics,
independent AR(1) trends, and Poisson observations
set.seed(0)

dat <- sim_mvgam(

T = 80,
n_series = 3,
mu = 2,

trend_model = AR(p = 1),
prop_missing = 0.1,

https://nicholasjclark.github.io/mvgam/articles/forecast_evaluation.html
https://nicholasjclark.github.io/mvgam/articles/forecast_evaluation.html
https://ecogambler.netlify.app/blog/interpreting-gams/

mvgam

prop_trend = 0.6
)

Plot key summary statistics for a single series
plot_mvgam_series(data = dat$data_train, series = 1)

Plot all series together
plot_mvgam_series(data = dat$data_train, series = "all")

Formulate a model using Stan where series share a cyclic smooth for
seasonality and each series has an independent AR1 temporal process.
Note that 'noncentred = TRUE' will likely give performance gains.
Set run_model = FALSE to inspect the returned objects
mod1 <- mvgam(

formula = y ~ s(season, bs = "cc”, k = 6),

data = dat$data_train,

trend_model = AR(),

family = poisson(),

noncentred = TRUE,

run_model = FALSE
)

View the model code in Stan language
stancode(mod1)

View the data objects needed to fit the model in Stan
sdatal <- standata(mod1)
str(sdatal)

Now fit the model
mod1 <- mvgam(
formula = y ~ s(season, bs = "cc”, k = 6),
data = dat$data_train,
trend_model = AR(),
family = poisson(),
noncentred = TRUE,
chains = 2,
silent = 2

)

Extract the model summary
summary (mod1)

Plot the historical trend and hindcast distributions for one series
hc_trend <- hindcast(modl, type = "trend")
plot(hc_trend)

hc_predicted <- hindcast(modl, type = "response")
plot(hc_predicted)

Residual diagnostics
plot(modl, type = "residuals”, series = 1)
resids <- residuals(mod1)

77

78

mvgam

str(resids)

Fitted values and residuals can be added directly to the training data
augment (mod1)

Compute the forecast using covariate information in data_test
fc <- forecast(modl, newdata = dat$data_test)

str(fc)

fc_summary <- summary(fc)

head(fc_summary, 12)

plot(fc)

Plot the estimated seasonal smooth function
plot(mod1, type = "smooths")

Plot estimated first derivatives of the smooth
plot(mod1, type = "smooths”, derivatives = TRUE)

Plot partial residuals of the smooth
plot(mod1, type = "smooths”, residuals = TRUE)

Plot posterior realisations for the smooth
plot(mod1, type = "smooths”, realisations = TRUE)

Plot conditional response predictions using marginaleffects
conditional_effects(mod1)
plot_predictions(modl, condition = "season”, points = 0.5)

Generate posterior predictive checks using bayesplot
pp_check(mod1)

Extract observation model beta coefficient draws as a data.frame
beta_draws_df <- as.data.frame(modl, variable = "betas")
head(beta_draws_df)

str(beta_draws_df)

Investigate model fit

mc.cores.def <- getOption("mc.cores")
options(mc.cores = 1)

loo(mod1)

options(mc.cores = mc.cores.def)

#
Vector Autoregressive (VAR) Models
#

Fit a model to the portal time series that uses a latent
Vector Autoregression of order 1
mod <- mvgam(

formula = captures ~ -1,

trend_formula = ~ trend,

trend_model = VAR(cor = TRUE),

mvgam

family = poisson(),
data = portal_data,
chains = 2,
silent = 2

Plot the autoregressive coefficient distributions;
use 'dir = "v"' to arrange the order of facets correctly
mcme_plot(

mod,

variable = 'A",

regex = TRUE,

type = 'hist',

facet_args = list(dir = 'v')

Plot the process error variance-covariance matrix in the same way
mcme_plot(

mod,

variable = 'Sigma',

regex = TRUE,

type = 'hist',

facet_args = list(dir = 'v')

Calculate Generalized Impulse Response Functions for each series
irfs <- irf(

mod,

h =12,

cumulative = FALSE

Plot some of them
plot(irfs, series = 1)
plot(irfs, series = 2)

Calculate forecast error variance decompositions for each series
fevds <- fevd(mod, h = 12)

Plot median contributions to forecast error variance
plot(fevds)

#

Dynamic Factor Models

#

Now fit a model that uses two RW dynamic factors to model
the temporal dynamics of the four rodent species
mod <- mvgam(

captures ~ series,

trend_model = RW(),

use_lv = TRUE,

mvgam

n_lv = 2,

data = portal_data,
chains = 2,

silent = 2

Plot the factors
plot(mod, type = 'factors')

Plot the hindcast distributions
hcs <- hindcast(mod)
plot(hcs, series = 1)
plot(hcs, series = 2)
plot(hcs, series = 3)
plot(hcs, series = 4)

Use residual_cor() to calculate temporal correlations among the series
based on the factor loadings

lvcors <- residual_cor(mod)

names(lvcors)

lvcors$cor

For those correlations whose credible intervals did not include
zero, plot them as a correlation matrix (all other correlations
are shown as zero on this plot)

plot(lvcors, cluster = TRUE)

#
Shared Latent Trends with Custom Trend Mapping
#

Example of supplying a trend_map so that some series can share
latent trend processes

sim <- sim_mvgam(n_series = 3)

mod_data <- sim$data_train

Here, we specify only two latent trends; series 1 and 2 share a trend,
while series 3 has its own unique latent trend
trend_map <- data.frame(
series = unique(mod_data$series),
trend = c(1, 1, 2)
)

Fit the model using AR1 trends
mod <- mvgam(
formula = y ~ s(season, bs = "cc”, k = 6),
trend_map = trend_map,
trend_model = AR(),
data = mod_data,
return_model_data = TRUE,
chains = 2,
silent = 2

mvgam 81

)

The mapping matrix is now supplied as data to the model in the 'Z' element
mod$model_data$z

The first two series share an identical latent trend; the third is different
plot(residual_cor(mod))

plot(mod, type = "trend”, series = 1)

plot(mod, type = "trend”, series = 2)

plot(mod, type = "trend”, series = 3)

#
Time-Varying (Dynamic) Coefficients
#

Example of how to use dynamic coefficients
Simulate a time-varying coefficient for the effect of temperature
set.seed(123)
N <- 200
beta_temp <- vector(length = N)
beta_temp[1] <- 0.4
for (i in 2:N) {
beta_temp[i] <- rnorm(1, mean = beta_temp[i - 1] - 0.0025, sd = 0.05)
}
plot(beta_temp)

Simulate a covariate called 'temp'
temp <- rnorm(N, sd = 1)

Simulate some noisy Gaussian observations
out <- rnorm(N,

mean = 4 + beta_temp * temp,

sd = 0.5
)

Gather necessary data into a data.frame; split into training / testing
data <- data.frame(out, temp, time = seq_along(temp))

data_train <- data[1:180,]

data_test <- data[181:200,]

Fit the model using the dynamic() function
mod <- mvgam(
formula = out ~ dynamic(
temp,
scale = FALSE,
k = 40
),
family = gaussian(),
data = data_train,
newdata = data_test,
chains = 2,
silent = 2

82

mvgam

)

Inspect the model summary, forecast and time-varying coefficient distribution
summary (mod)

plot(mod, type = "smooths")

fc <- forecast(mod, newdata = data_test)

plot(fc)

Propagating the smooth term shows how the coefficient is expected to evolve
plot_mvgam_smooth(mod, smooth = 1, newdata = data)

abline(v = 180, 1ty = "dashed”, 1lwd = 2)

points(beta_temp, pch = 16)

#
Working with Offset Terms
#

Example showing how to incorporate an offset; simulate some count data
with different means per series
set.seed(100)
dat <- sim_mvgam(
prop_trend = 0,
mu = c(0, 2, 2),
seasonality = "hierarchical”

)

Add offset terms to the training and testing data
dat$data_train$offset <- 0.5 * as.numeric(dat$data_train$series)
dat$data_test$offset <- 0.5 * as.numeric(dat$data_test$series)

Fit a model that includes the offset in the linear predictor as well as
hierarchical seasonal smooths
mod <- mvgam(
formula = y ~ offset(offset) +
s(series, bs = "re") +
s(season, bs = "cc") +
s(season, by = series, m =1, k = 5),
data = dat$data_train,
chains = 2,
silent = 2

)

Inspect the model file to see the modification to the linear predictor (eta)
stancode (mod)

Forecasts for the first two series will differ in magnitude
fc <- forecast(mod, newdata = dat$data_test)

plot(fc, series = 1, ylim = c(@, 75))

plot(fc, series = 2, ylim = c(0, 75))

Changing the offset for the testing data should lead to changes in
the forecast

mvgam

dat$data_test$offset <- dat$data_test$offset - 2
fc <- forecast(mod, newdata = dat$data_test)
plot(fc)

Relative Risks can be computed by fixing the offset to the same value
for each series
dat$data_test$offset <- rep(1, NROW(dat$data_test))
preds_rr <- predict(mod,
type = "link”,
newdata = dat$data_test,
summary = FALSE

)
seriesl_inds <- which(dat$data_test$series == "series_1")
series2_inds <- which(dat$data_test$series == "series_2")

Relative Risks are now more comparable among series
layout(matrix(1:2, ncol = 2))
plot(preds_rr[1, seriesl_inds],

type = "1", col = "grey75",

ylim = range(preds_rr),

ylab = "Series1 Relative Risk”, xlab = "Time"
)
for (i in 2:50) {

lines(preds_rr[i, seriesl_inds], col = "grey75")
}

plot(preds_rr[1, series2_inds],
type = "1", col = "darkred”,

ylim = range(preds_rr),
ylab = "Series2 Relative Risk”, xlab = "Time"
)
for (i in 2:50) {
lines(preds_rr[i, series2_inds], col = "darkred")
3
layout (1)
#
Binomial Family Models
#

Example showcasing how cbind() is needed for Binomial observations
Simulate two time series of Binomial trials
trials <- sample(c(20:25), 50, replace = TRUE)
X <- rnorm(50)
detprobl <- plogis(-0.5 + 0.9 * x
detprob2 <- plogis(-0.1 - 0.7 * x
dat <- rbind(
data. frame(
y = rbinom(n = 50, size = trials, prob = detprob1),
time = 1:50,
series = "seriesl1”,
X = X,

)
)

84

ntrials = trials

),

data. frame(
y = rbinom(n = 50, size = trials, prob = detprob2),
time = 1:50,
series = "series2",
X = X,
ntrials = trials

)

)

dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)
plot_mvgam_series(data = dat, series = "all")

Fit a model using the binomial() family; must specify observations
and number of trials in the cbind() wrapper
mod <- mvgam(
formula = cbind(y, ntrials) ~ series + s(x, by = series),
family = binomial(),
data = dat,
chains = 2,
silent = 2
)
summary (mod)
pp_check(mod,
type = "bars_grouped”,
group = "series”, ndraws = 50
)
pp_check(mod,
type = "ecdf_overlay_grouped”,
group = "series”, ndraws = 50
)
conditional_effects(mod, type = "link")

To view predictions on the probability scale,
use ntrials = 1 in datagrid()
plot_predictions(
mod,
by = c('x', 'series'),
newdata = datagrid(
x = runif(1ee0, -2, 2),
series = unique,
ntrials = 1
),
type = 'expected'

mvgam-class

mvgam-class Fitted mvgam object description

mvgam-class 85

Description

A fitted mvgam object returned by function mvgam. Run methods(class = "mvgam”) to see an
overview of available methods.

Details

A mvgam object contains the following elements:

call the original observation model formula

trend_call Ifa trend_formula was supplied, the original trend model formula is returned.
Otherwise NULL

family character description of the observation distribution
trend_model character description of the latent trend model

trend_map data. frame describing the mapping of trend states to observations, if supplied in
the original model. Otherwise NULL

drift Logical specifying whether a drift term was used in the trend model

priors If the model priors were updated from their defaults, the prior dataframe will be
returned. Otherwise NULL

model_output The MCMC object returned by the fitting engine. If the model was fitted using
Stan, this will be an object of class stanfit (see stanfit-class for details). If JAGS was
used as the backend, this will be an object of class runjags (see runjags-class for details)

model_file The character string model file used to describe the model in either Stan or
JAGS syntax

model_data If return_model_data was set to TRUE when fitting the model, the 1ist object
containing all data objects needed to condition the model is returned. Each item in the 1ist is
described in detail at the top of the model_file. Otherwise NULL

inits If return_model_data was set to TRUE when fitting the model, the initial value func-
tions used to initialise the MCMC chains will be returned. Otherwise NULL

monitor_pars The parameters that were monitored during MCMC sampling are returned as
acharacter vector

sp_names A character vector specifying the names for each smoothing parameter

mgcv_model An object of class gam containing the mgcv version of the observation model.
This object is used for generating the linear predictor matrix when making predictions for
new data. The coefficients in this model object will contain the posterior median coefficients
from the GAM linear predictor, but these are only used if generating plots of smooth functions
that mvgam currently cannot handle (such as plots for three-dimensional smooths). This model
therefore should not be used for inference. See gamObject for details

trend_mgcv_model If a trend_formula was supplied, an object of class gam containing
the mgcv version of the trend model. Otherwise NULL

ytimes The matrix object used in model fitting for indexing which series and timepoints were
observed in each row of the supplied data. Used internally by some downstream plotting and
prediction functions

resids A named list object containing posterior draws of Dunn-Smyth randomized quantile
residuals

86 mvgam_diagnostics

* use_lv Logical flag indicating whether latent dynamic factors were used in the model
* n_lv If use_lv == TRUE, the number of latent dynamic factors used in the model

* upper_bounds If bounds were supplied in the original model fit, they will be returned. Oth-
erwise NULL

* obs_data The original data object (either a 1ist or dataframe) supplied in model fitting.

* test_data If test data were supplied (as argument newdata in the original model), it will be
returned. Othwerise NULL

* fit_engine Character describing the fit engine, either as stan or jags

* backend Character describing the backend used for modelling, either as rstan, cmdstanr
or rjags

* algorithmCharacter describing the algorithm used for finding the posterior, either as sampling,
laplace, pathfinder, meanfield or fullrank

* max_treedepth If the model was fitted using Stan, the value supplied for the maximum
treedepth tuning parameter is returned (see stan for details). Otherwise NULL

* adapt_delta If the model was fitted using Stan, the value supplied for the adapt_delta tuning
parameter is returned (see stan for details). Otherwise NULL

Author(s)
Nicholas J Clark

See Also

mvgam

mvgam_diagnostics Extract diagnostic quantities of mvgam models

Description
Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan
at the back-end of mvgam.

Usage

S3 method for class 'mvgam'
nuts_params(object, pars = NULL, ...)

S3 method for class 'mvgam'
log_posterior(object, ...)

S3 method for class 'mvgam'
rhat(x, pars = NULL, ...)

S3 method for class 'mvgam'
neff_ratio(object, pars = NULL, ...)

mvgam_draws

Arguments

object, x

pars

Details

87

A mvgam or jsdgam object.

An optional character vector of parameter names. For nuts_params these will
be NUTS sampler parameter names rather than model parameters. If pars is
omitted all parameters are included.

Arguments passed to individual methods.

For more details see bayesplot-extractors.

Value

The exact form of the output depends on the method.

Examples
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

np <- nuts_params(mod)

head(np)

extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(neff_ratio(mod))

mvgam_draws

Extract posterior draws from fitted mvgam objects

Description

Extract posterior draws in conventional formats as data.frames, matrices, or arrays.

Usage

S3 method for class 'mvgam'

as.data.frame(

X)
row.names =

NULL,

optional = TRUE,
variable = "betas”,

use_alias =

TRUE,

88

#it

as.

#H#
as

##

as_

)

#it
as

)

#it
as

)

##

regex = FALSE,

S3 method for class 'mvgam'

matrix(x, variable = "betas”, regex = FALSE, use_alias = TRUE,
S3 method for class 'mvgam'

.array(x, variable = "betas"”, regex = FALSE, use_alias = TRUE,
S3 method for class 'mvgam'

draws(
X’

variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,

S3 method for class 'mvgam'
_draws_matrix(

X,
variable = NULL,

regex = FALSE,

inc_warmup = FALSE,
use_alias = TRUE,

S3 method for class 'mvgam'
_draws_df(

X,

variable = NULL,

regex = FALSE,

inc_warmup = FALSE,
use_alias = TRUE,

S3 method for class 'mvgam'

as_draws_array/(

X,

variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,

mvgam_draws

.2

D)

mvgam_draws 89

)

S3 method for class 'mvgam'
as_draws_list(
X,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,

)

S3 method for class 'mvgam'

as_draws_rvars(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)
Arguments

X list object of class mvgam

row.names Ignored

optional Ignored

variable A character specifying which parameters to extract. Can either be one of the

following options:

* obs_params (other parameters specific to the observation model, such as
overdispersions for negative binomial models or observation error SD for
gaussian / student-t models)

* betas (beta coefficients from the GAM observation model linear predictor;
default)

* smooth_params (smoothing parameters from the GAM observation model)

* linpreds (estimated linear predictors on whatever link scale was used in
the model)

* trend_params (parameters governing the trend dynamics, such as AR pa-
rameters, trend SD parameters or Gaussian Process parameters)

* trend_betas (beta coefficients from the GAM latent process model linear
predictor; only available if a trend_formula was supplied in the original
model)

* trend_smooth_params (process model GAM smoothing parameters; only
available if a trend_formula was supplied in the original model)

* trend_linpreds (process model linear predictors on the identity scale;
only available if a trend_formula was supplied in the original model)

OR can be a character vector providing the variables to extract.

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names
with the more informative alias. Defaults to TRUE.

regex Logical. If not using one of the prespecified options for extractions, should
variable be treated as a (vector of) regular expressions? Any variable in x
matching at least one of the regular expressions will be selected. Defaults to
FALSE.

90

Ignored

inc_warmup Should warmup draws be included? Defaults to FALSE.

Value

A data.frame, matrix, or array containing the posterior draws.

Author(s)
Nicholas J Clark

Examples

sim <- sim_mvgam(family = Gamma())

mod1 <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
data = sim$data_train,
family = Gamma(),

chains = 2,
silent = 2
)
beta_draws_df <- as.data.frame(modl, variable = 'betas')

head(beta_draws_df)
str(beta_draws_df)

beta_draws_mat <- as.matrix(mod1, variable = 'betas')
head(beta_draws_mat)
str(beta_draws_mat)

shape_pars <- as.matrix(mod1, variable = 'shape', regex = TRUE)
head(shape_pars)

mvgam_families

mvgam_families Supported mvgam families

Description

Supported mvgam families

Usage

tweedie(link = "log")

student_t(link = "identity")

mvgam_{families 91

betar(...)

nb(...)
lognormal(...)
student(...)
bernoulli(...)
beta_binomial(...)

nmix(link = "log")

Arguments
link a specification for the family link function. At present these cannot be changed
Arguments to be passed to the mgev version of the associated functions
Details

mvgam currently supports the following standard observation families:

* gaussian with identity link, for real-valued data

* poisson with log-link, for count data

* Gamma with log-link, for non-negative real-valued data

* binomial with logit-link, for count data when the number of trials is known (and must be
supplied)

In addition, the following extended families from the mgcv and brms packages are supported:

* betar with logit-link, for proportional data on (0, 1)

* nb with log-link, for count data

* lognormal with identity-link, for non-negative real-valued data
* bernoulli with logit-link, for binary data

* beta_binomial with logit-link, as for binomial () but allows for overdispersion
Finally, mvgam supports the three extended families described here:

* tweedie with log-link, for count data (power parameter p fixed at 1.5)
* student_t() (or student) with identity-link, for real-valued data

e nmix for count data with imperfect detection modeled via a State-Space N-Mixture model.
The latent states are Poisson (with log link), capturing the ’true’ latent abundance, while the
observation process is Binomial to account for imperfect detection. The observation formula
in these models is used to set up a linear predictor for the detection probability (with logit
link). See the example below for a more detailed worked explanation of the nmix () family

92 mvgam_families

Only poisson(), nb(), and tweedie() are available if using JAGS. All families, apart from tweedie(),
are supported if using Stan.

Note that currently it is not possible to change the default link

functions in mvgam, so any call to change these will be silently ignored

Value

Objects of class family

Author(s)
Nicholas J Clark

Examples

#
N-mixture Models
#
set.seed(999)

Simulate observations for species 1, which shows a declining trend and
0.7 detection probability
data.frame(
site =1,
five replicates per year; six years
replicate = rep(1:5, 6),
time = sort(rep(1:6, 5)),
species = 'sp_1',
true abundance declines nonlinearly
truth = c(
rep(28, 5),
rep(26, 5),
rep(23, 5),
rep(16, 5),
rep(14, 5),
rep(14, 5)
),
observations are taken with detection prob = 0.7
obs = c(
rbinom(5, 28,
rbinom(5, 26,
rbinom(5, 23,
rbinom(5, 15,
rbinom(5, 14,
rbinom(5, 14,

.7,
.7,
.7,
.7,
.7,
.7

[SENSEESER IR I

)
) %>%
add 'series' information, which is an identifier of site, replicate
and species
dplyr: :mutate(
series = paste@(
'site_', site,

-

mvgam_{families

_', species,
rep", replicate

time = as.numeric(time),
add a 'cap' variable that defines the maximum latent N to

marginalize over when estimating latent abundance; in other words
how large do we realistically think the true abundance could be?
cap = 80

) %%

dplyr::select(-replicate) -> testdat

Now add another species that has a different temporal trend and a
smaller detection probability (@.45 for this species)

testdat <- testdat %>%
dplyr::bind_rows(

)

data.frame(

site = 1,
replicate = rep(1:5, 6),
time = sort(rep(1:6, 5)),

species = 'sp_2',

truth = c(
rep(4, 5),
rep(7, 5),
rep(15, 5),
rep(16, 5),
rep(19, 5),
rep(18, 5)

),

obs = c(

rbinom(5, 4, 0.45),

rbinom(5, 7, 0.45),

rbinom(5, 15, 0.45),

rbinom(5, 16, 0.45),

rbinom(5, 19, 0.45),

rbinom(5, 18, 0.45)
)

) %

dplyr: :mutate(
series = paste0(
'site_', site,
'_', species,
'_rep_', replicate
),
time = as.numeric(time),
cap = 50
) %>%
dplyr::select(-replicate)

series identifiers
testdat$species <- factor(
testdat$species,
levels = unique(testdat$species)

94

)
testdat$series <- factor(
testdat$series,
levels = unique(testdat$series)
)

The trend_map to state how replicates are structured
testdat %>%
each unique combination of site*species is a separate process
dplyr: :mutate(
trend = as.numeric(factor(paste@(site, species)))
) %%
dplyr::select(trend, series) %>%
dplyr::distinct() -> trend_map
trend_map

Fit a model

mod <- mvgam(
the observation formula sets up linear predictors for
detection probability on the logit scale
formula = obs ~ species - 1,

the trend_formula sets up the linear predictors for
the latent abundance processes on the log scale
trend_formula = ~ s(time, by = trend, k = 4) + species,

the trend_map takes care of the mapping
trend_map = trend_map,

nmix() family and data
family = nmix(),
data = testdat,

priors can be set in the usual way

priors = c(
prior(std_normal(), class = b),
prior(normal(1, 1.5), class = Intercept_trend)

)Y

chains = 2
The usual diagnostics
summary (mod)

Plotting conditional effects
library(ggplot2)

plot_predictions(

mod,
condition = 'species',
type = 'detection'

) +

ylab('Pr(detection)') +

mvgam_families

mvgam_fevd-class 95

ylim(c(o, 1)) +
theme_classic() +
theme(legend.position = 'none')

#
Binomial Models
#

Simulate two time series of Binomial trials
trials <- sample(c(20:25), 50, replace = TRUE)
X <- rnorm(50)
detprobl <- plogis(-0.5 + 0.9 * x)
detprob2 <- plogis(-0.1 - 0.7 * x)
dat <- rbind(

data. frame(

y = rbinom(n = 50, size = trials, prob = detprob1),

time = 1:50,
series = 'seriesl',
X = X,

ntrials = trials

)?
data.frame(
y = rbinom(n = 50, size = trials, prob = detprob2),

time = 1:50,
series = 'series2',
X = X,

ntrials = trials
)
)

dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)

Fit a model using the binomial() family; must specify observations
and number of trials in the cbind() wrapper
mod <- mvgam(
cbind(y, ntrials) ~ series + s(x, by = series),
family = binomial(),
data = dat
)

summary (mod)

mvgam_fevd-class mvgam_fevd object description

Description

A mvgam_fevd object returned by function fevd(). Run methods(class = "mvgam_fevd") to see
an overview of available methods.

96 mvgam_forecast-class

Details

A forecast error variance decomposition is useful for quantifying the amount of information each
series that in a Vector Autoregression contributes to the forecast distributions of the other series in
the autoregression. This object contains the forecast error variance decomposition using the orthog-
onalised impulse response coefficient matrices ¥j,, which can be used to quantify the contribution
of series j to the h-step forecast error variance of series k:

on(h) = Z(%%j,o +o wzj,h—ﬁ

K
J=1

If the orthogonalised impulse reponses (17 ot 3 J, 1) are divided by the variance of the
forecast error o (h), this yields an interpretable percentage representing how much of the forecast
error variance for k can be explained by an exogenous shock to j. This percentage is what is
calculated and returned in objects of class mvgam_fevd, where the posterior distribution of variance
decompositions for each variable in the original model is contained in a separate slot within the
returned 1ist object

Author(s)
Nicholas J Clark

References

Liitkepohl, H (2006). New Introduction to Multiple Time Series Analysis. Springer, New York.

See Also
mvgam(), VAR()

mvgam_forecast-class mvgam_forecast object description

Description

A mvgam_forecast object returned by function hindcast or forecast. Run methods(class =
"mvgam_forecast") to see an overview of available methods.

Details
A mvgam_forecast object contains the following elements:

* call the original observation model formula

e trend_call Ifa trend_formula was supplied, the original trend model formula is returned.
Otherwise NULL

e family character description of the observation distribution

mvgam_formulae 97

e family_pars list containing draws of family-specific parameters (i.e. shape, scale or overdis-
persion parameters). Only returned if type = 1ink. Otherwise NULL

* trend_model character description of the latent trend model

» drift Logical specifying whether a drift term was used in the trend model

* use_lv Logical flag indicating whether latent dynamic factors were used in the model
» fit_engine Character describing the fit engine, either as stan or jags

* type The type of predictions included (either 1ink, response or trend)

* series_names Names of the time series, taken from levels(data$series) in the original
model fit

* train_observations A list of training observation vectors of length n_series
* train_times A list of the unique training times of length n_series

e test_observations If the forecast function was used, a 1ist of test observation vectors of
length n_series. Otherwise NULL

e test_times If the forecast function was used, a 1list of the unique testing (validation)
times of length n_series. Otherwise NULL

* hindcasts A list of posterior hindcast distributions of length n_series.

* forecasts If the forecast function was used, a list of posterior forecast distributions of
length n_series. Otherwise NULL

Author(s)
Nicholas J Clark

See Also

mvgam, hindcast.mvgam, forecast. mvgam

mvgam_formulae Details of formula specifications in mvgam models

Description

Details of formula specifications in mvgam models

Details

mvgam will accept an observation model formula and an optional process model formula (via the
argument trend_formula). Neither of these formulae can be specified as lists, contrary to the ac-
cepted behaviour in some mgcv or brms models.

Note that it is possible to supply an empty formula where there are no predictors or intercepts
in the observation model (i.e. y ~@ or y ~ -1). In this case, an intercept-only observation model
will be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit
pure State-Space models where the variation in the dynamic trend controls the average expectation,

98 mvgam_irf-class
and/or where intercepts are non-identifiable.
The formulae supplied to mvgam and jsdgam are exactly like those supplied to glm except that
smooth terms, s, te, ti and t2, time-varying effects using dynamic, monotonically increasing (us-
ing s(x, bs = "moi')) or decreasing splines (using s(x, bs = 'mod'); see smooth.construct.moi
for details), as well as Gaussian Process functions using gp and offsets using of fset can be added
to the right hand side (and . is not supported in mvgam formulae).
Further details on specifying different kinds of smooth functions, and how to control their be-
haviours by modifying their potential complexities and / or how the penalties behave, can be found
in the extensive documentation for the mgcv package.

Author(s)
Nicholas J Clark

See Also
mvgam, formula.gam, gam.models, jagam, gam, s, gp, formula

mvgam_irf-class mvgam_irf object description

Description
A mvgam_irf object returned by function irf. Run methods(class = "mvgam_irf") to see an
overview of available methods.

Details
Generalized or Orthogonalized Impulse Response Functions can be computed using the posterior
estimates of Vector Autoregressive parameters. This function generates a positive "shock" for a
target process at time t = @ and then calculates how each of the remaining processes in the latent
VAR are expected to respond over the forecast horizon h. The function computes IRFs for all
processes in the object and returns them in an array that can be plotted using the S3 plot function.
To inspect community-level metrics of stability using latent VAR processes, you can use the related
stability() function.
A mvgam_irf object contains a 1ist of posterior impulse response functions, each stored as its own
list

Author(s)
Nicholas J Clark

References

PH Pesaran & Shin Yongcheol (1998). Generalized impulse response analysis in linear multivariate
models. Economics Letters 58: 17-29.

.smooth. spec

mvgam_marginaleffects

See Also

mvgam, VAR

mvgam_marginaleffects Helper functions for marginaleffects calculations in mvgam models

Description

Helper functions for marginaleffects calculations in mvgam models
Functions needed for working with marginaleffects

Functions needed for getting data / objects with insight

Usage

S3 method for class 'mvgam'
get_coef(model, trend_effects = FALSE, ...)

S3 method for class 'mvgam'
set_coef(model, coefs, trend_effects = FALSE, ...)

S3 method for class 'mvgam'
get_vcov(model, vcov = NULL, ...)

S3 method for class 'mvgam'
get_predict(

model,

newdata,

type = "response”,

mfx,

newparams,

ndraws,

se.fit,

process_error = FALSE,

)

S3 method for class 'mvgam'
get_data(x, source = "environment”, verbose = TRUE, ...)

S3 method for class 'mvgam_prefit'
get_data(x, source = "environment”, verbose = TRUE, ...)

S3 method for class 'mvgam'
find_predictors(

X,

effects = c("fixed”, "random”, "all"),

100 mvgam_marginaleffects

component = c("all”, "conditional”, "zi", "zero_inflated”, "dispersion”, "instruments”,
"correlation”, "smooth_terms"),

flatten = FALSE,

verbose = TRUE,

S3 method for class 'mvgam_prefit'
find_predictors(

X,
effects = c("fixed"”, "random”, "all"),
component = c("all”, "conditional”, "zi", "zero_inflated”, "dispersion”, "instruments”,

"correlation”, "smooth_terms"),
flatten = FALSE,
verbose = TRUE,

Arguments

model Model object

trend_effects logical, extract from the process model component (only applicable if a trend_formula
was specified in the model)

Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

coef's vector of coefficients to insert in the model object
vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:
* FALSE: Do not compute standard errors. This can speed up computation
considerably.

* TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.
* String which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "HC", "HC@", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich: :vcovHC
— Heteroskedasticity and autocorrelation consistent: "HAC"
— Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
— Other: "NeweyWest"”, "KernHAC", "OPG". See the sandwich package
documentation.
— "rsample", "boot", "fwb", and "simulation" are passed to the method
argument of the inferences() function. To customize the bootstrap
or simulation process, call inferences() directly.

mvgam_marginaleffects 101

newdata

type

mfx
newparams
ndraws
se.fit

process_error

* One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).
This formula is passed to the cluster argument of the sandwich: : vcovCL
function.

* Square covariance matrix
* Function which returns a covariance matrix (e.g., stats: : vcov(model))

Grid of predictor values at which we evaluate the slopes.

* Warning: Please avoid modifying your dataset between fitting the model
and calling a marginaleffects function. This can sometimes lead to un-
expected results.

* NULL (default): Unit-level slopes for each observed value in the dataset (em-
pirical distribution). The dataset is retrieved using insight: :get_data(),
which tries to extract data from the environment. This may produce unex-
pected results if the original data frame has been altered since fitting the
model.

* datagrid() call to specify a custom grid of regressors. For example:

— newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.
— See the Examples section and the datagrid() documentation.

* subset() call with a single argument to select a subset of the dataset used
to fit the model, ex: newdata = subset(treatment == 1)

e dplyr::filter() call with a single argument to select a subset of the
dataset used to fit the model, ex: newdata = filter(treatment == 1)

* string:

"mean": Slopes evaluated when each predictor is held at its mean or
mode.

- "median": Slopes evaluated when each predictor is held at its median
or mode.

— "balanced": Slopes evaluated on a balanced grid with every combina-
tion of categories and numeric variables held at their means.

— "tukey": Slopes evaluated at Tukey’s 5 numbers.

— "grid": Slopes evaluated on a grid of representative numbers (Tukey’s
5 numbers and unique values of categorical predictors).

string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response”, "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

Ignored
Ignored
Ignored
Ignored

logical. If TRUE, uncertainty in the latent process (or trend) model is incorpo-
rated in predictions

102 mvgam_marginaleffects

X A fitted model.

source String, indicating from where data should be recovered. If source = "environment”

(default), data is recovered from the environment (e.g. if the data is in the
workspace). This option is usually the fastest way of getting data and ensures
that the original variables used for model fitting are returned. Note that always
the current data is recovered from the environment. Hence, if the data was
modified after model fitting (e.g., variables were recoded or rows filtered), the
returned data may no longer equal the model data. If source = "frame” (or
"mf"), the data is taken from the model frame. Any transformed variables are
back-transformed, if possible. This option returns the data even if it is not avail-
able in the environment, however, in certain edge cases back-transforming to
the original data may fail. If source = "environment” fails to recover the data,
it tries to extract the data from the model frame; if source = "frame” and data
cannot be extracted from the model frame, data will be recovered from the envi-
ronment. Both ways only returns observations that have no missing data in the
variables used for model fitting.

verbose Toggle messages and warnings.

effects Should model data for fixed effects ("fixed"), random effects ("random”) or
both ("all”) be returned? Only applies to mixed or gee models.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects (from mfx). See de-
tails in section Model Components .May be abbreviated. Note that the condi-
tional component also refers to the count or mean component - names may dif-
fer, depending on the modeling package. There are three convenient shortcuts
(not applicable to all model classes):
* component = "all” returns all possible parameters.
 If component = "location", location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument - but
no auxiliary parameters).
* For component = "distributional” (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary parameters)
are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
Value

Objects suitable for internal *marginaleffects’ functions to proceed. See marginaleffects::get_coef(),
marginaleffects::set_coef (), marginaleffects::get_vcov(),marginaleffects::get_predict(),
insight::get_data() and insight::find_predictors() for details

Author(s)

Nicholas J Clark

mvgam_residcor-class 103

mvgam_residcor-class mvgam_residcor object description

Description

A mvgam_residcor object returned by function residual_cor (). Runmethods(class = "mvgam_residcor")
to see an overview of available methods.

Details

Hui (2016) provides an excellent description of the quantities that this function calculates, so this
passage is heavily paraphrased from his associated boral package.

In latent factor models, the residual covariance matrix is calculated based on the matrix of latent
factor loading matrix ©, where the residual covariance matrix ¥ = ©©’. A strong residual covari-
ance/correlation matrix between two species can be interpreted as evidence of species interactions
(e.g., facilitation or competition), missing covariates, as well as any additional species correlation
not accounted for by shared environmental captured in formula.

The residual precision matrix (also known as partial correlation matrix, Ovaskainen et al., 2016)
is defined as the inverse of the residual correlation matrix. The precision matrix is often used
to identify direct or causal relationships between two species e.g., two species can have a zero
precision but still be correlated, which can be interpreted as saying that two species are not directly
associated, but they are still correlated through other species. In other words, they are conditionally
independent given the other species. It is important that the precision matrix does not exhibit the
exact same properties of the correlation e.g., the diagonal elements are not equal to 1. Nevertheless,
relatively larger values of precision may imply stronger direct relationships between two species.
In addition to the residual correlation and precision matrices, the median or mean point estimator
of trace of the residual covariance matrix is returned, Zp: [©00©'];,. Often used in other areas of mul-
j=1

J
tivariate statistics, the trace may be interpreted as the amount of covariation explained by the latent

factors. One situation where the trace may be useful is when comparing a pure latent factor model
(where no terms are suppled to formula) versus a model with latent factors and some additional
predictors in formula — the proportional difference in trace between these two models may be in-
terpreted as the proportion of covariation between species explained by the predictors in formula.
Of course, the trace itself is random due to the MCMC sampling, and so it is not always guaranteed
to produce sensible answers.

Value
Objects of this class are structured as a 1ist with the following components:

cor, cor_lower, cor_upper
A set of p X p correlation matrices, containing either the posterior median or
mean estimate, plus lower and upper limits of the corresponding credible inter-
vals supplied to probs

sig_cor A p X p correlation matrix containing only those correlations whose credible
interval does not contain zero. All other correlations are set to zero

104 mvgam_trends

prec, prec_lower, prec_upper
A set of p X p precision matrices, containing either the posterior median or mean
estimate, plus lower and upper limits of the corresponding credible intervals
supplied to probs

sig_prec A pxp precision matrix containing only those precisions whose credible interval
does not contain zero. All other precisions are set to zero

cov A p X p posterior median or mean covariance matrix

trace The median/mean point estimator of the trace (sum of the diagonal elements) of

the residual covariance matrix cov

Author(s)
Nicholas J Clark

References

Francis KC Hui (2016). BORAL - Bayesian ordination and regression analysis of multivariate
abundance data in R. Methods in Ecology and Evolution. 7, 744-750.

Otso Ovaskainen et al. (2016). Using latent variable models to identify large networks of species-
to-species associations at different spatial scales. Methods in Ecology and Evolution, 7, 549-555.

See Also

jsdgam(), residual_cor()

mvgam_trends Supported latent trend models in mvgam

Description

Supported latent trend models in mvgam

Details
mvgam currently supports the following dynamic trend models:

* None (no latent trend component; i.e. the GAM component is all that contributes to the linear
predictor, and the observation process is the only source of error; similar to what is estimated

by gam)
e ZMVN() (zero-mean correlated errors, useful for modelling time series where no autoregressive
terms are needed or for modelling data that are not sampled as time series)

* RWQ)
* AR(p =1, 2, or 3)
* CAR(p =1) (continuous time autoregressive trends; only available in Stan)

* VAR() (only available in Stan)

mvgam_use_cases 105

* PW() (piecewise linear or logistic trends; only available in Stan)

* GP() (Gaussian Process with squared exponential kernel; only available in Stan)

For most dynamic trend types available in mvgam (see argument trend_model), time should be
measured in discrete, regularly spaced intervals (i.e. c(1, 2, 3, ...)). However, you can use
irregularly spaced intervals if using trend_model = CAR(1), though note that any temporal intervals
that are exactly @ will be adjusted to a very small number (1e-12) to prevent sampling errors.

For all autoregressive trend types apart from CAR(), moving average and/or correlated process error
terms can also be estimated (for example, RW(cor = TRUE) will set up a multivariate Random Walk
if data contains >1 series). Hierarchical process error correlations can also be handled if the data
contain relevant observation units that are nested into relevant grouping and subgrouping levels (i.e.
using AR(gr = region, subgr = species)).

Note that only RW, AR1, AR2 and AR3 are available if using JAGS. All trend models are supported if
using Stan.

Dynamic factor models can be used in which the latent factors evolve as either RW, AR1-3, VAR or
GP. For VAR models (i.e. VAR and VARcor models), users can either fix the trend error covariances
to be @ (using VAR) or estimate them and potentially allow for contemporaneously correlated errors
using VARcor.

For all VAR models, stationarity of the latent process is enforced through the prior using the param-
eterisation given by Heaps (2022). Stationarity is not enforced when using AR1, AR2 or AR3 models,
though this can be changed by the user by specifying lower and upper bounds on autoregressive
parameters using functionality in get_mvgam_priors and the priors argument in mvgam.

Piecewise trends follow the formulation in the popular prophet package produced by Facebook,
where users can allow for changepoints to control the potential flexibility of the trend. See Taylor
and Letham (2018) for details.

References

Sarah E. Heaps (2022) Enforcing stationarity through the prior in Vector Autoregressions. Journal
of Computational and Graphical Statistics. 32:1, 1-10.

Sean J. Taylor and Benjamin Letham (2018) Forecasting at scale. The American Statistician 72.1,
37-45.

See Also

RW, AR, CAR, VAR, PW, GP, ZMVN

mvgam_use_cases Example use cases for mvgam

106 mvgam_use_cases

Description

mvgam is a package for fitting dynamic generalized additive models (GAMS) to univariate or multi-
variate data. It combines the flexibility of smooth functions with latent temporal processes to model
autocorrelation, seasonality, and uncertainty. The package supports both univariate and multivariate
time series, making it especially useful for ecological and environmental forecasting. Bayesian in-
ference via Stan allows for full uncertainty quantification and forecasting in complex, non-Gaussian
settings.

This help page provides external links to example applications and discussions relevant to the use
of mvgam models. These examples span non-Gaussian time series modelling, multivariate abun-
dance forecasting, and the use of complex predictors such as time-varying seasonality, monotonic
nonlinear effects and Gaussian processes.

Details

Non-Gaussian time series modelling and forecasting

mvgam is designed for real-world time series data that include discrete, zero-inflated, or overdis-
persed observations. It supports latent dynamic components and smooth terms to model autocorre-
lation, trends, and uncertainty.

* Uncertain serial autocorrelation in GAM count model residuals

* Fitting an autoregressive model and Poisson process interdependently
* Cyclical residual patterns and variable selection in GAMs

* Causality between two binary time series

* Logistic regression on time series data

* Autocorrelation for unevenly spaced time series

* Visualising autocorrelation in irregularly spaced count data

* Blog post: State-Space Vector Autoregressions in mvgam

* Vignette: State-Space models in mvgam

* Video tutorial: Ecological forecasting with Dynamic Generalized Additive Models

Multivariate time series modelling and forecasting

mvgam supports multivariate models with shared or correlated latent trends, making it suitable for
a broad range of applications that gather data on multiple time series simultaneously.

* Ecological modelling: multivariate abundance time-series data

* Relationships between species in multivariate models

» Confirmatory factor analysis using brms

 Chains stuck in a local optimum: correlated Poisson distributions
* Blog post: Hierarchical distributed lag models in mgcv and mvgam
* Vignette: Multivariate series with shared latent states

* Video tutorial: Time series in R and Stan using the mvgam package: hierarchical GAMs

https://stats.stackexchange.com/questions/657495
https://discourse.mc-stan.org/t/fitting-an-autoregressive-model-and-poisson-process-interdependently/37268
https://stats.stackexchange.com/questions/652174
https://stats.stackexchange.com/questions/437125
https://stats.stackexchange.com/questions/285100
https://discourse.mc-stan.org/t/autocorrelation-for-unevenly-spaced-time-series/10001
https://stats.stackexchange.com/questions/664160
https://ecogambler.netlify.app/blog/vector-autoregressions/
https://nicholasjclark.github.io/mvgam/articles/trend_formulas.html
https://www.youtube.com/watch?v=0zZopLlomsQ&t=4s
https://stats.stackexchange.com/questions/172645
https://discourse.mc-stan.org/t/account-for-relationships-between-species-in-a-multivariate-brms-model/32566
https://discourse.mc-stan.org/t/confirmatory-factor-analysis-using-brms/23139
https://discourse.mc-stan.org/t/chains-stuck-in-a-local-optimum-correlated-poisson-distributions/37414
https://ecogambler.netlify.app/blog/distributed-lags-mgcv/
https://nicholasjclark.github.io/mvgam/articles/shared_states.html
https://www.youtube.com/watch?v=2POK_FVwCHk

ordinate.jsdgam 107

Seasonality and other complex predictors

mvgam allows for flexible modelling of seasonal patterns and nonlinear effects using cyclic smooths,
Gaussian processes, monotonic smooths and hierarchical structures.

* Gaussian process smoothers (bs = "gp") in GAMs

* Fitting a GAM with double seasonality to a daily time series

» Simulating time series with different seasonal effects

* Adding time as a monotone predictor

* Blog post: Incorporating time-varying seasonality in forecast models
* Vignette: Time-varying effects in mvgam

* Video tutorial: Time series in R and Stan using the mvgam package: an introduction

Author(s)
Nicholas J Clark

ordinate. jsdgam Latent variable ordination plots from jsdgam objects

Description

Plot an ordination of latent variables and their factor loadings from jsdgam models

Usage

ordinate(object, ...)

S3 method for class 'jsdgam'
ordinate(

object,

which_lvs = c(1, 2),

biplot = TRUE,

alpha = 0.5,

label_sites = TRUE,

Arguments
object list object of class jsdgam resulting from a call to jsdgam()
ignored
which_lvs A vector of indices indicating the two latent variables to be plotted (if number

of the latent variables specified in the model was more than 2). Defaults to c(1,

2)

https://stats.stackexchange.com/questions/478384
https://stats.stackexchange.com/questions/612312
https://stats.stackexchange.com/questions/648143
https://discourse.mc-stan.org/t/adding-time-as-monotne-predictor/37109
https://ecogambler.netlify.app/blog/time-varying-seasonality/
https://nicholasjclark.github.io/mvgam/articles/time_varying_effects.html
https://www.youtube.com/watch?v=fzPJUW8x6DU

108 ordinate.jsdgam

biplot Logical. If TRUE, both the site and the species scores will be plotted, with
names for the taxa interpreted based on the species argument in the original
call to jsdgam(). If FALSE, only the site scores will be plotted

alpha A proportional numeric scalar between @ and 1 that controls the relative scaling
of the latent variables and their loading coefficients

label_sites Logical flag. If TRUE, site scores will be plotted as labels using names based on
the unit argument in the original call to jsdgam(). If FALSE, site scores will be
shown as points only

Details

This function constructs a two-dimensional scatterplot in ordination space. The chosen latent vari-
ables are first re-rotated using singular value decomposition, so that the first plotted latent variable
does not have to be the first latent variable that was estimated in the original model. Posterior
median estimates of the variables and the species’ loadings on these variables are then used to
construct the resulting plot. Some attempt at de-cluttering the resulting plot is made by using
geom_label_repel() and geom_text_repel from the ggrepel package, but if there are many sites
and/or species then some labels may be removed automatically. Note that you can typically get
better, more readable plot layouts if you also have the ggarrow and ggpp packages installed

Value

An ggplot object

Author(s)
Nicholas J Clark

See Also

jsdgam(), residual_cor()

Examples

Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
formula = captures ~
Fixed effects of NDVI and mintemp, row effect as a GP of time
ndvi_mal2:series + mintemp:series + gp(time, k = 15),
factor_formula = ~ -1,
data = portal_data,
unit = time,
species = series,

family = poisson(),
n_lv = 2,

silent = 2,

chains = 2

Plot a residual ordination biplot

pairs.mvgam

ordinate(
mod,
alpha = 0.7
)

Compare to a residual correlation plot
plot(
residual_cor(mod)

)

109

pairs.mvgam Create a matrix of output plots from a mvgam object

Description

A pairs method that is customized for MCMC output.

Usage
S3 method for class 'mvgam'
pairs(x, variable = NULL, regex = FALSE, use_alias = TRUE, ...)
Arguments
X An object of class mvgam or jsdgam
variable Names of the variables (parameters) to plot, as given by a character vector or

a regular expression (if regex = TRUE). By default, a hopefully not too large

selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.

Defaults to FALSE.

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names

with the more informative alias. Defaults to TRUE.

Further arguments to be passed to mcmc_pairs.

Details

For a detailed description see mcmc_pairs.

Value

Plottable objects whose classes depend on the arguments supplied. See mcmc_pairs for details.

110 plot.mvgam

Examples
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)
pairs(mod)
pairs(mod, variable = c('ar1', 'sigma'), regex = TRUE)
plot.mvgam Default plots for mvgam models
Description

This function takes a fitted mvgam object and produces plots of smooth functions, forecasts, trends
and uncertainty components

Usage

S3 method for class 'mvgam'
plot(

X,

type = "residuals”,

series = 1,

residuals = FALSE,

newdata,

data_test,

trend_effects = FALSE,

)
Arguments

X list object returned from mvgam. See mvgam()

type character specifying which type of plot to return. Options are: "series”,
"residuals”, "smooths”, "re"” (random effect smooths), "pterms” (paramet-
ric effects), "forecast”, "trend”, "uncertainty”, "factors”

series integer specifying which series in the set is to be plotted. This is ignored if
type == "re'

residuals logical. If TRUE and type = 'smooths', posterior quantiles of partial residu-

als are added to plots of 1-D smooths as a series of ribbon rectangles. Partial
residuals for a smooth term are the median Dunn-Smyth residuals that would be
obtained by dropping the term concerned from the model, while leaving all other

plot. mvgam 111

estimates fixed (i.e. the estimates for the term plus the original median Dunn-
Smyth residuals). Note that because mvgam works with Dunn-Smyth residuals
and not working residuals, which are used by mgcv, the magnitudes of partial
residuals will be different to what you would expect from plot.gam. Interpre-
tation is similar though, as these partial residuals should be evenly scattered
around the smooth function if the function is well estimated

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the original
formula. This argument is optional when plotting out of sample forecast period
observations (when type = forecast) and required when plotting uncertainty
components (type = uncertainty).

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

Additional arguments for each individual plotting function.

Details

These plots are useful for getting an overview of the fitted model and its estimated random effects or
smooth functions, but the individual plotting functions and the functions from the marginaleffects
and gratia packages offer far more customisation.

Value

A base R plot or set of plots

Author(s)
Nicholas J Clark

See Also

plot_mvgam_resids, plot_mvgam_smooth, plot_mvgam_fc, plot_mvgam_trend, plot_mvgam_uncertainty,
plot_mvgam_factors, plot_mvgam_randomeffects, conditional_effects.mvgam, plot_predictions,
plot_slopes, gratia_mvgam_enhancements

Examples

Simulate some time series
dat <- sim_mvgam(

T = 80,

n_series = 3

)

Fit a basic model

mod <- mvgam(
y ~ s(season, bs = 'cc') + s(series, bs = 're'),
data = dat$data_train,

112

trend_model = RW(),

chains = 2,

silent = 2
)
Plot predictions and residuals for each series
plot(mod, type = 'forecast', series = 1)
plot(mod, type = 'forecast', series = 2)
plot(mod, type = 'forecast', series = 3)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)
plot(mod, type = 'residuals', series = 3)

Plot model effects
plot(mod, type = 'smooths')
plot(mod, type = 're')

More flexible plots with 'marginaleffects' utilities
library(marginaleffects)

plot_predictions(
mod,
condition = 'season',
type = 'link'

)

plot_predictions(
mod,
condition = c('season', 'series', 'series'),
type = 'link'

)

plot_predictions(
mod,
condition = 'series',
type = 'link'

)

When using a State-Space model with predictors on the process
model, set trend_effects = TRUE to visualise process effects
mod <- mvgam(

y ~ -1,

trend_formula = ~ s(season, bs = 'cc'),

data = dat$data_train,

trend_model = RW(),

chains = 2,

silent = 2
)

plot(mod, type = 'smooths', trend_effects = TRUE)

But 'marginaleffects' functions work without any modification
plot_predictions(

plot.mvgam

plot.mvgam_fevd 113

mod,
condition = 'season',
type = 'link'
)
plot.mvgam_fevd Plot forecast error variance decompositions from an mvgam_fevd ob-
Jject
Description

This function takes an mvgam_fevd object and produces a plot of the posterior median contributions
to forecast variance for each series in the fitted Vector Autoregression

Usage
S3 method for class 'mvgam_fevd'
plot(x, ...)
Arguments
X list object of class mvgam_fevd. See fevd()
ignored
Value

A ggplot object, which can be further customized using the ggplot2 package

Author(s)
Nicholas J Clark

plot.mvgam_irf Plot impulse responses from an mvgam_irf object

Description

This function takes an mvgam_irf object and produces plots of Impulse Response Functions

Usage

S3 method for class 'mvgam_irf'
plot(x, series =1, ...)

114 plot. mvgam_Ifo

Arguments
X list object of class mvgam_irf. See irf()
series integer specifying which process series should be given the shock
ignored
Value

A ggplot object showing the expected response of each latent time series to a shock of the focal
series

Author(s)

Nicholas J Clark

plot.mvgam_1fo Plot Pareto-k and ELPD values from a mvgam_1fo object

Description

This function takes an object of class mvgam_1fo and creates several informative diagnostic plots

Usage
S3 method for class 'mvgam_lfo'
plot(x, ...)
Arguments
X An object of class mvgam_1fo
Ignored
Value

A ggplot object presenting Pareto-k and ELPD values over the evaluation timepoints. For the
Pareto-k plot, a dashed red line indicates the specified threshold chosen for triggering model refits.
For the ELPD plot, a dashed red line indicates the bottom 10% quantile of ELPD values. Points
below this threshold may represent outliers that were more difficult to forecast

plot.mvgam_residcor 115

plot.mvgam_residcor Plot residual correlations based on latent factors

Description

Plot residual correlation estimates from Joint Species Distribution (jsdgam) or dynamic factor
(mvgam) models

Usage
S3 method for class 'mvgam_residcor'
plot(x, cluster = FALSE, ...)
Arguments
X list object of class mvgam_residcor resulting from a call to residual_cor(.. .,

summary = TRUE)

cluster Logical. Should the variables be re-arranged within the plot to group the cor-
relation matrix into clusters of positive and negative correlations? Defaults to
FALSE
ignored
Details

This function plots the significant residual correlations from a mvgam_residcor object, whereby the
posterior mean (if robust = FALSE) or posterior median (if robust = TRUE) correlations are shown
only those correlations whose credible interval does not contain zero. All other correlations are set
to zero in the returned plot

Value

A ggplot object

Author(s)

Nicholas J Clark

See Also

jsdgam(), lv_correlations(), residual_cor()

116 plot_mvgam_factors

plot_mvgam_factors Latent factor summaries for a fitted mvgam object

Description
This function takes a fitted mvgam object and returns plots and summary statistics for the latent
dynamic factors

Usage

plot_mvgam_factors(object, plot = TRUE)

Arguments

object list object returned from mvgam. See mvgam()

plot logical specifying whether factors should be plotted
Details

If the model in object was estimated using dynamic factors, it is possible that not all factors
contributed to the estimated trends. This is due to the regularisation penalty that acts independently
on each factor’s Gaussian precision, which will squeeze un-needed factors to a white noise process
(effectively dropping that factor from the model). In this function, each factor is tested against a
null hypothesis of white noise by calculating the sum of the factor’s 2nd derivatives. A factor that
has a larger contribution will have a larger sum due to the weaker penalty on the factor’s precision.
If plot == TRUE, the factors are also plotted.

Value

A data. frame of factor contributions

Author(s)
Nicholas J Clark

Examples

simdat <- sim_mvgam()

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
use_lv = TRUE,
n_lv = 2,
data = simdat$data_train,
chains = 2,
silent = 2

plot_mvgam_forecasts

plot_mvgam_factors(mod)

117

plot_mvgam_forecasts

Plot posterior forecast predictions from mvgam models

Description

Plot posterior forecast predictions from mvgam models

Usage

plot_mvgam_fc(
object,
series = 1,
newdata,
data_test,

realisations = FALSE,
n_realisations = 15,
hide_xlabels = FALSE,

xlab,

ylab,

ylim,

n_cores = 1,
return_forecasts =

FALSE,

return_score = FALSE,

S3 method for class 'mvgam_forecast'

plot(
X’
series = 1,

realisations = FALSE,
n_realisations = 15,

xlab,
ylab,
ylim,

Arguments

object

series

list object of class mvgam. See mvgam()

integer specifying which series in the set is to be plotted

118

newdata

data_test

realisations

n_realisations

hide_xlabels

xlab
ylab
ylim

n_cores

pl ot_m Vgam_forecas ts

Optional dataframe or 1ist of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the origi-
nal formula. If included, the covariate information in newdata will be used to
generate forecasts from the fitted model equations. If this same newdata was
originally included in the call to mvgam, then forecasts have already been pro-
duced by the generative model and these will simply be extracted and plotted.
However if no newdata was supplied to the original model call, an assumption
is made that the newdata supplied here comes sequentially after the data sup-
plied as data in the original model (i.e. we assume there is no time gap between
the last observation of series 1 in data and the first observation for series 1 in
newdata). If newdata contains observations in column y, these observations
will be used to compute a Discrete Rank Probability Score for the forecast dis-
tribution

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

logical. If TRUE, forecast realisations are shown as a spaghetti plot, making
it easier to visualise the diversity of possible forecasts. If FALSE, the default,
empirical quantiles of the forecast distribution are shown

integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

logical. If TRUE, no xlabels are printed to allow the user to add custom labels
using axis from base R

Label for x axis
Label for y axis
Optional vector of y-axis limits (min, max)

integer specifying number of cores for generating forecasts in parallel

return_forecasts

return_score

Details

logical. If TRUE, the function will plot the forecast as well as returning the
forecast object (as a matrix of dimension n_samples x horizon)

logical. If TRUE and out of sample test data is provided as newdata, a proba-
bilistic score will be calculated and returned. The score used will depend on the
observation family from the fitted model. Discrete families (poisson, negative
binomial, tweedie) use the Discrete Rank Probability Score. Other families
use the Continuous Rank Probability Score. The value returned is the sum of all
scores within the out of sample forecast horizon

Further par graphical parameters

Object of class mvgam_forecast

plot_mvgam_fc generates posterior predictions from an object of class mvgam, calculates posterior
empirical quantiles and plots them against the observed data. If realisations = FALSE, the re-
turned plot shows 90, 60, 40 and 20 percent posterior quantiles (as ribbons of increasingly darker
shades of red) as well as the posterior median (as a dark red line). If realisations = TRUE, a set
of n_realisations posterior draws are shown. This function produces an older style base R plot,
as opposed to plot.mvgam_forecast

plot_mvgam_forecasts 119

plot.mvgam_forecast takes an object of class mvgam_forecast, in which forecasts have already
been computed, and plots the resulting forecast distribution as a ggplot object. This function is
therefore more versatile and is recommended over the older and clunkier plot_mvgam_fc version

If realisations = FALSE, these posterior quantiles are plotted along with the true observed data
that was used to train the model. Otherwise, a spaghetti plot is returned to show possible forecast
paths.

Value

A base R graphics plot (for plot_mvgam_fc) or a ggplot object (for plot.mvgam_forecast) and
an optional 1ist containing the forecast distribution and the out of sample probabilistic forecast
score

Author(s)
Nicholas J Clark

Examples

simdat <- sim_mvgam(
n_series = 3,
trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2
)

Hindcasts on response scale
hc <- hindcast(mod)

str(hc)

plot(hc, series = 1)

plot(hc, series = 2)

plot(hc, series = 3)

Forecasts on response scale
fc <- forecast(

mod,

newdata = simdat$data_test
)
str(fc)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Forecasts as expectations
fc <- forecast(

120 plot_mvgam_pterms

mod,
newdata = simdat$data_test,
type = 'expected'
)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Dynamic trend extrapolations
fc <- forecast(

mod,
newdata = simdat$data_test,
type = 'trend'

)

plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

plot_mvgam_pterms Plot parametric term partial effects for mvgam models

Description

This function plots posterior empirical quantiles for partial effects of parametric terms

Usage

plot_mvgam_pterms(object, trend_effects = FALSE)

Arguments

object list object of class mvgam. See mvgam()
trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the

trend (i.e. process) model will be plotted
Details
Posterior empirical quantiles of each parametric term’s partial effect estimates (on the link scale)
are calculated and visualised as ribbon plots. These effects can be interpreted as the partial effect
that a parametric term contributes when all other terms in the model have been set to @

Value

A base R graphics plot

Author(s)
Nicholas J Clark

plot_mvgam_randomeffects 121

plot_mvgam_randomeffects
Plot random effect terms from mvgam models

Description

This function plots posterior empirical quantiles for random effect smooths (bs = re)

Usage

plot_mvgam_randomeffects(object, trend_effects = FALSE)

Arguments

object list object of class mvgam. See mvgam()

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted
Details

Posterior empirical quantiles of random effect coefficient estimates (on the link scale) are calculated
and visualised as ribbon plots. Labels for coefficients are taken from the levels of the original factor
variable that was used to specify the smooth in the model’s formula

Value

A base R graphics plot

Author(s)
Nicholas J Clark

plot_mvgam_resids Residual diagnostics for a fitted mvgam object

Description

This function takes a fitted mvgam object and returns various residual diagnostic plots

Usage

plot_mvgam_resids(object, series = 1, n_draws = 100L, n_points = 1000L)

122 plot_mvgam_resids

Arguments
object list object returned from mvgam. See mvgam()
series integer specifying which series in the set is to be plotted
n_draws integer specifying the number of posterior residual draws to use for calculating
uncertainty in the "ACF" and "pACF" frames. Default is 100
n_points integer specifying the maximum number of points to show in the "Resids vs
Fitted" and "Normal Q-Q Plot" frames. Default is 1000
Details

A total of four ggplot plots are generated to examine posterior Dunn-Smyth residuals for the speci-
fied series. Plots include a residuals vs fitted values plot, a Q-Q plot, and two plots to check for any
remaining temporal autocorrelation in the residuals. Note, all plots only report statistics from a sam-
ple of up to 100 posterior draws (to save computational time), so uncertainty in these relationships
may not be adequately represented.

Value

A facetted ggplot object

Author(s)

Nicholas J Clark
Nicholas J Clark and Matthijs Hollanders

Examples

simdat <- sim_mvgam(
n_series = 3,
trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2
)

Plot Dunn Smyth residuals for some series
plot_mvgam_resids(mod)
plot_mvgam_resids(mod, series = 2)

plot_mvgam_series 123

plot_mvgam_series Plot observed time series used for mvgam modelling

Description

This function takes either a fitted mvgam object or a data. frame object and produces plots of ob-
served time series, ACF, CDF and histograms for exploratory data analysis

Usage

plot_mvgam_series(
object,
data,
newdata,

no,n

y =Y,

lines = TRUE,
series = 1,
n_bins = NULL,
log_scale = FALSE

)
Arguments

object Optional list object returned from mvgam. Either object or data must be
supplied

data Optional data.frame or 1list of training data containing at least ’series’ and
’time’. Use this argument if training data have been gathered in the correct
format for mvgam modelling but no model has yet been fitted.

newdata Optional data. frame or 1list of test data containing at least ’series’ and ’time’
for the forecast horizon, in addition to any other variables included in the lin-
ear predictor of formula. If included, the observed values in the test data are
compared to the model’s forecast distribution for exploring biases in model pre-
dictions

y Character. What is the name of the outcome variable in the supplied data? De-
faults to 'y'

lines Logical. If TRUE, line plots are used for visualizing time series. If FALSE, points
are used.

series Either an integer specifying which series in the set is to be plotted or the string
"all’, which plots all series available in the supplied data

n_bins integer specifying the number of bins to use for binning observed values when
plotting a histogram. Default is to use the number of bins returned by a call to
hist in base R

log_scale logical. If series == 'all’, this flag is used to control whether the time series

plot is shown on the log scale (using log(Y +1)). This can be useful when
visualizing many series that may have different observed ranges. Default is
FALSE

124 plot_mvgam_smooth

Value

A set of ggplot objects. If series is an integer, the plots will show observed time series, autocor-
relation and cumulative distribution functions, and a histogram for the series. If series == 'all"',
a set of observed time series plots is returned in which all series are shown on each plot but only a
single focal series is highlighted, with all remaining series shown as faint gray lines.

Author(s)
Nicholas J Clark and Matthijs Hollanders

Examples

Simulate and plot series with observations bounded at @ and 1 (Beta responses)
sim_data <- sim_mvgam(

family = betar(),

trend_model = RW(),

prop_trend = 0.6
)

plot_mvgam_series(
data = sim_data$data_train,
series = 'all'

)

plot_mvgam_series(
data = sim_data$data_train,
newdata = sim_data$data_test,
series = 1

)

Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(

family = nb(),

trend_model = RW(),

prop_trend = 0.6,

phi = 10
)

plot_mvgam_series(
data = sim_data$data_train,

series = 'all'
)
plot_mvgam_smooth Plot smooth terms from mvgam models
Description

This function plots posterior empirical quantiles for a series-specific smooth term

plot_mvgam_smooth

Usage

125

plot_mvgam_smooth(

object,

trend_effects

series = 1,
smooth,

= FALSE,

residuals = FALSE,

n_resid_bins =

25,

realisations = FALSE,
n_realisations = 15,
derivatives = FALSE,

newdata

Arguments

object
trend_effects

series
smooth
residuals

n_resid_bins

realisations

n_realisations

derivatives

newdata

list object of class mvgam. See mvgam()

logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

integer specifying which series in the set is to be plotted

Either a character or integer specifying which smooth term to be plotted
logical. If TRUE, posterior quantiles of partial residuals are added to plots of
1-D smooths as a series of ribbon rectangles. Partial residuals for a smooth term
are the median Dunn-Smyth residuals that would be obtained by dropping the
term concerned from the model, while leaving all other estimates fixed (i.e. the
estimates for the term plus the original median Dunn-Smyth residuals). Note
that because mvgam works with Dunn-Smyth residuals and not working residu-
als, which are used by mgcv, the magnitudes of partial residuals will be different
to what you would expect from plot.gam. Interpretation is similar though, as
these partial residuals should be evenly scattered around the smooth function if
the function is well estimated

integer specifying the number of bins to group the covariate into when plotting
partial residuals. Setting this argument too high can make for messy plots that
are difficult to interpret, while setting it too low will likely mask some potentially
useful patterns in the partial residuals. Default is 25

logical. If TRUE, posterior realisations are shown as a spaghetti plot, making
it easier to visualise the diversity of possible functions. If FALSE, the default,
empirical quantiles of the posterior distribution are shown

integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

logical. If TRUE, an additional plot will be returned to show the estimated
Ist derivative for the specified smooth (Note: this only works for univariate
smooths)

Optional dataframe for predicting the smooth, containing at least ’series’ in
addition to any other variables included in the linear predictor of the original
model’s formula. Note that this currently is only supported for plotting univari-
ate smooths

126

Details

plot_mvgam_trend

Smooth functions are shown as empirical quantiles (or spaghetti plots) of posterior partial expecta-
tions across a sequence of values between the variable’s min and max, while zeroing out effects of
all other variables. At present, only univariate and bivariate smooth plots are allowed, though note
that bivariate smooths rely on default behaviour from plot.gam. plot_mvgam_smooth generates
posterior predictions from an object of class mvgam, calculates posterior empirical quantiles and
plots them. If realisations = FALSE, the returned plot shows 90, 60, 40 and 20 percent posterior
quantiles (as ribbons of increasingly darker shades of red) as well as the posterior median (as a dark
red line). If realisations = TRUE, a set of n_realisations posterior draws are shown. For more
nuanced visualisation, supply newdata just as you would when predicting from a gam model or use
the more flexible conditional_effects.mvgam. Alternatively, if you prefer to use partial effect
plots in the style of gratia, and if you have the gratia package installed, you can use draw. mvgam
See gratia_mvgam_enhancements for details.

Value

A base R graphics plot

Author(s)
Nicholas J Clark

See Also

plot.gam, conditional_effects.mvgam, gratia_mvgam_enhancements

plot_mvgam_trend

Plot latent trend predictions from mvgam models

Description

Plot latent trend predictions from mvgam models

Usage

plot_mvgam_trend(
object,
series = 1,
newdata,
data_test,

realisations = FALSE,

n_realisations =
n_cores = 1,

15,

derivatives = FALSE,

xlab,
ylab

plot_mvgam_trend

Arguments

object
series

newdata

data_test

realisations

n_realisations

n_cores

derivatives

xlab
ylab

Value

A ggplot object

Author(s)
Nicholas J Clark

Examples

127

list object returned from mvgam. See mvgam()
integer specifying which series in the set is to be plotted

Optional dataframe or 1ist of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the original
formula.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

logical. If TRUE, posterior trend realisations are shown as a spaghetti plot,
making it easier to visualise the diversity of possible trend paths. If FALSE, the
default, empirical quantiles of the posterior distribution are shown

integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

Deprecated. Parallel processing is no longer supported

logical. If TRUE, an additional plot will be returned to show the estimated 1st
derivative for the estimated trend

Label for x axis

Label for y axis

simdat <- sim_mvgam(

n_series = 3,

trend_model = AR()

)

mod <- mvgam(

y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),

noncentred = TRUE,

data = simdat$data_train,

chains = 2

)

Plot estimated trends for some series
plot_mvgam_trend(mod)
plot_mvgam_trend(mod, series = 2)

Extrapolate trends forward in time and plot on response scale

128

plot_mvgam_uncertainty

plot_mvgam_trend(

mod,
newdata =

)

simdat$data_test

plot_mvgam_trend(

mod,
newdata =
series =

)

But it is

first and

trend_fc <-
mod,
newdata =

)

plot(trend_fc, series =
plot(trend_fc, series

simdat$data_test,

recommended to compute extrapolations for all series
then plot
forecast(

simdat$data_test

D
2)

plot_mvgam_uncertainty

Plot forecast uncertainty contributions from mvgam models

Description

Plot forecast uncertainty contributions from mvgam models

Usage

plot_mvgam_

object,
series =
newdata,

uncertainty(

T,

data_test,
legend_position = "topleft”,

hide_xlabels =

Arguments

object
series

newdata

FALSE

list object returned from mvgam. See mvgam()
integer specifying which series in the set is to be plotted

A dataframe or list containing at least ’series’ and ’time’ for the forecast
horizon, in addition to any other variables included in the linear predictor of
formula

portal_data 129

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows
legend_position
The location may also be specified by setting x to a single keyword from the list:
"none", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright",
"right" and "center". This places the legend on the inside of the plot frame at the
given location (if it is not "none").

hide_xlabels logical. If TRUE, no xlabels are printed to allow the user to add custom labels
using axis from base R

Details

The basic idea of this function is to compute forecasts by ignoring one of the two primary compo-
nents in a correlated residual model (i.e. by either ignoring the linear predictor effects or by ignoring
the residual dynamics). Some caution is required however, as this function was designed early in
the mvgam development cycle and there are now many types of models that it cannot handle very
well. For example, models with shared latent states, or any type of State-Space models that include
terms in the trend_formula, will either fail or give nonsensical results. Improvements are in the
works to provide a more general way to decompose forecast uncertainties, so please check back at
a later date.

Value

A base R graphics plot

portal_data Portal Project rodent capture survey data

Description
A dataset containing time series of total captures (across all control plots) for select rodent species
from the Portal Project

Usage

portal_data

Format
A data. frame containing the following fields:

time time of sampling, in lunar monthly cycles

series factor indicator of the time series, i.e. the species

captures total captures across all control plots at each time point

ndvi_mal2 12-month moving average of the mean Normalised Difference Vegetation Index

mintemp monthly mean of minimum temperature

130

Source

posterior_epred.mvgam

https://github.com/weecology/PortalData/blob/main/SiteandMethods/Methods.md

posterior_epred.mvgam Draws from the expected value of the posterior predictive distribution

for mvgam objects

Description

Compute posterior draws of the expected value of the posterior predictive distribution (i.e. the
conditional expectation). Can be performed for the data used to fit the model (posterior predictive
checks) or for new data. By definition, these predictions have smaller variance than the posterior
predictions performed by the posterior_predict.mvgam method. This is because only the un-
certainty in the expected value of the posterior predictive distribution is incorporated in the draws
computed by posterior_epred while the residual error is ignored there. However, the estimated
means of both methods averaged across draws should be very similar.

Usage

S3 method for class 'mvgam'
posterior_epred(

object,
newdata,
data_test,

ndraws = NULL,
process_error = TRUE,

Arguments

object

newdata

data_test

ndraws

process_error

list object of class mvgam or jsdgam. See mvgam()

Optional dataframe or 1ist of test data containing the same variables that were
included in the original data used to fit the model. If not supplied, predictions
are generated for the original observations used for the model fit.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

Ignored

https://github.com/weecology/PortalData/blob/main/SiteandMethods/Methods.md

posterior_epred.mvgam 131

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x n_obs, where n_samples is the number of posterior samples
from the fitted object and n_obs is the number of observations in newdata

Author(s)
Nicholas J Clark

See Also

hindcast.mvgam, posterior_linpred.mvgam, posterior_predict.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(

n_series = 1,

trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2

)

Compute posterior expectations
expectations <- posterior_epred(mod)
str(expectations)

132

posterior_linpred.mvgam

posterior_linpred.mvgam

Posterior draws of the linear predictor for mvgam objects

Description

Compute posterior draws of the linear predictor, that is draws before applying any link functions
or other transformations. Can be performed for the data used to fit the model (posterior predictive
checks) or for new data.

Usage

S3 method for class 'mvgam'
posterior_linpred(

object,
transform =
newdata,

FALSE,

ndraws = NULL,

data_test,

process_error = TRUE,

Arguments

object

transform

newdata

ndraws

data_test

process_error

list object of class mvgam or jsdgam. See mvgam()

logical; if FALSE (the default), draws of the linear predictor are returned. If
TRUE, draws of the transformed linear predictor, i.e. the conditional expectation,
are returned.

Optional dataframe or 1ist of test data containing the same variables that were
included in the original data used to fit the model. If not supplied, predictions
are generated for the original observations used for the model fit.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

Ignored

posterior_linpred.mvgam 133

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x n_obs, where n_samples is the number of posterior samples
from the fitted object and n_obs is the number of observations in newdata

Author(s)

Nicholas J Clark

See Also

hindcast.mvgam, posterior_epred.mvgam, posterior_predict.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(

n_series = 1,

trend_model = AR()
)

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2

)

Extract linear predictor values
linpreds <- posterior_linpred(mod)
str(linpreds)

134

posterior_predict. mvgam

posterior_predict.mvgam

Draws from the posterior predictive distribution for mvgam objects

Description

Compute posterior draws of the posterior predictive distribution. Can be performed for the data
used to fit the model (posterior predictive checks) or for new data. By definition, these draws have
higher variance than draws of the expected value of the posterior predictive distribution computed by
posterior_epred.mvgam. This is because the residual error is incorporated in posterior_predict.
However, the estimated means of both methods averaged across draws should be very similar.

Usage

S3 method for class 'mvgam'
posterior_predict(

object,
newdata,
data_test,

ndraws = NULL,
process_error = TRUE,

Arguments

object

newdata

data_test

ndraws

process_error

list object of class mvgam or jsdgam. See mvgam()

Optional dataframe or 1list of test data containing the same variables that were
included in the original data used to fit the model. If not supplied, predictions
are generated for the original observations used for the model fit.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

Logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

Ignored

posterior_predict. mvgam 135

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x new_obs, where n_samples is the number of posterior sam-
ples from the fitted object and n_obs is the number of observations in newdata

Author(s)

Nicholas J Clark

See Also

hindcast.mvgam, posterior_linpred.mvgam, posterior_epred.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
data = simdat$data_train,
chains = 2,
silent = 2

)

Compute posterior predictions
predictions <- posterior_predict(mod)
str(predictions)

136

ppc.mvgam

ppc.mvgam

Plot conditional posterior predictive checks from mvgam models

Description

Plot conditional posterior predictive checks from mvgam models

Usage

ppc(object,

)

S3 method for class 'mvgam'

ppc(
object,
newdata,

data_test,

series =

type = "hist",

n_bins,

legend_position,

xlab,
ylab,

Arguments

object

newdata

data_test

series

type

n_bins

list object returned from mvgam. See mvgam()
Further par graphical parameters

Optional dataframe or 1list of test data containing at least ’series’ and ’time’
for the forecast horizon, in addition to any other variables included in the lin-
ear predictor of formula. If included, the observed values in the test data are
compared to the model’s forecast distribution for exploring biases in model pre-
dictions. Note this is only useful if the same newdata was also included when
fitting the original model.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

integer specifying which series in the set is to be plotted

character specifying the type of posterior predictive check to calculate and
plot. Valid options are: ‘rootogram’, mean’, "hist’, ’density’, *prop_zero’, ’pit’
and ’cdf’

integer specifying the number of bins to use for binning observed values when
plotting a rootogram or histogram. Default is 50 bins for a rootogram, which
means that if there are >50 unique observed values, bins will be used to prevent
overplotting and facilitate interpretation. Default for a histogram is to use the
number of bins returned by a call to hist in base R

ppc.mvgam 137

legend_position
The location may also be specified by setting x to a single keyword from the list
"bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right"
and "center". This places the legend on the inside of the plot frame at the given
location. Or alternatively, use "none" to hide the legend.

xlab Label for x axis
ylab Label for y axis
Details

Conditional posterior predictions are drawn from the fitted mvgam and compared against the empir-
ical distribution of the observed data for a specified series to help evaluate the model’s ability to
generate unbiased predictions. For all plots apart from type = 'rootogram', posterior predictions
can also be compared to out of sample observations as long as these observations were included as
’data_test’ in the original model fit and supplied here. Rootograms are currently only plotted using
the *hanging’ style.

Note that the predictions used for these plots are conditional on the observed data, i.e. they are those
predictions that have been generated directly within the mvgam() model. They can be misleading
if the model included flexible dynamic trend components. For a broader range of posterior checks
that are created using unconditional "new data" predictions, see pp_check.mvgam

Value

A base R graphics plot showing either a posterior rootogram (for type == 'rootogram'), the pre-
dicted vs observed mean for the series (for type == 'mean'), predicted vs observed proportion of
zeroes for the series (for type == 'prop_zero'), predicted vs observed histogram for the series (for
type == 'hist"), kernel density or empirical CDF estimates for posterior predictions (for type ==
"density' or type == 'cdf') or a Probability Integral Transform histogram (for type == 'pit").

Author(s)
Nicholas J Clark

See Also

pp_check.mvgam, predict.mvgam

Examples

Simulate some smooth effects and fit a model
set.seed(0)

dat <- mgcv::gamSim(
1,
n = 200,
scale = 2

)

mod <- mvgam(
y ~ s(x@) + s(x1) + s(x2) + s(x3),

138 pp_check.mvgam

data = dat,
family = gaussian(),
chains = 2,
silent = 2

)

Posterior checks
ppc(mod, type = "hist")
ppc(mod, type = "density")
ppc(mod, type = "cdf")

Many more options are available with pp_check()
pp_check (mod)

pp_check(mod, type = "ecdf_overlay")
pp_check(mod, type = "freqgpoly”)

pp_check.mvgam Posterior Predictive Checks for mvgam models

Description

Perform unconditional posterior predictive checks with the help of the bayesplot package.

Usage

S3 method for class 'mvgam'
pp_check(

object,

type,

ndraws = NULL,

prefix = c("ppc”, "ppd"),

group = NULL,

x = NULL,

newdata = NULL,

)
Arguments
object An object of class mvgam
type Type of the ppc plot as given by a character string. See PPC for an overview of
currently supported types. You may also use an invalid type (e.g. type = "xyz")
to get a list of supported types in the resulting error message.
ndraws Positive integer indicating how many posterior draws should be used. If NULL

all draws are used. If not specified, the number of posterior draws is chosen
automatically. Ignored if draw_ids is not NULL.

pp_check.mvgam

prefix

group

newdata

Details

139

ne

The prefix of the bayesplot function to be applied. Either ‘"ppc"‘ (posterior
predictive check; the default) or “"ppd"* (posterior predictive distribution), the
latter being the same as the former except that the observed data is not shown
fOr ‘prdﬂ‘.

Optional name of a factor variable in the model by which to stratify the ppc plot.
This argument is required for ppc *_grouped types and ignored otherwise.

Optional name of a variable in the model. Only used for ppc types having an x
argument and ignored otherwise.

Optional dataframe or 1ist of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit. Ignored if using one of the residual
plots (i.e. ’resid_hist’)

Further arguments passed to predict.mvgam as well as to the PPC function
specified in type

Unlike the conditional posterior checks provided by ppc, This function computes unconditional
posterior predictive checks (i.e. it generates predictions for fake data without considering the true
observations associated with those fake data). For a detailed explanation of each of the ppc func-
tions, see the PPC documentation of the bayesplot package.

Value

A ggplot object that can be further customized using the ggplot2 package.

Author(s)
Nicholas J Clark

See Also

ppc, predict.mvgam

Examples

simdat <- sim_mvgam(seasonality = "hierarchical”)

mod <- mvgam(
y ~ series +
s(season, bs

= "cc”, k= 6) +

s(season, series, bs = "fs", k = 4),
data = simdat$data_train,

chains = 2,
silent = 2
)

Use pp_check(mod, type = "xyz") for a list of available plot types

Default is a density overlay for all observations

pp_check(mod)

140

Rootograms particularly useful for count data
pp_check(mod, type = "rootogram")

Grouping plots by series is useful
pp_check(mod,
type = "bars_grouped”,
group = "series"”, ndraws = 50
)
pp_check(mod,
type = "ecdf_overlay_grouped”,
group = "series”, ndraws = 50
)
pp_check(mod,
type = "stat_freqgpoly_grouped”,
group = "series”, ndraws = 50

)

Several types can be used to plot distributions of randomized

quantile residuals
pp_check(
object = mod,
x = "season”,
type = "resid_ribbon”
)
pp_check(
object = mod,
X = "season”,
group = "series”,
type = "resid_ribbon_grouped”
)
pp_check(mod,
ndraws = 5,
type = "resid_hist_grouped”,
group = "series”

)

Custom functions accepted
pp_check(mod, type = "stat”, stat = function(x) mean(x
pp_check(mod,

type = "stat_grouped”,

stat = function(x) mean(x == 0),

group = "series”

)

Some functions accept covariates to set the x-axes
pp_check(mod,

x = "season”,

type = "ribbon_grouped”,

prob = 0.5,

prob_outer = 0.8,

group = "series”

== @))

pp_check.mvgam

predict.mvgam

141

Many plots can be made without the observed data
pp_check(mod, prefix = "ppd")

predict.mvgam

Predict from a fitted mvgam model

Description

Predict from a fitted mvgam model

Usage

S3 method for class 'mvgam

predict(
object,
newdata,

data_test,

type = "link",
process_error = FALSE,
summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

Arguments

object

newdata

data_test

type

list object of class mvgam or jsdgam. See mvgam()

Optional dataframe or 1ist of test data containing the same variables that were
included in the original data used to fit the model. If not supplied, predictions
are generated for the original observations used for the model fit.

Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

When this has the value 1ink (default) the linear predictor is calculated on the
link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms”, each component of the linear
predictor is returned separately in the form of a 1ist (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent

142 predict. mvgam

abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

process_error Logical. If TRUE and a dynamic trend model was fit, expected uncertainty in
the process model is accounted for by using draws from a stationary, zero-
centred multivariate Normal distribution using any estimated process variance-
covariance parameters. If FALSE, uncertainty in the latent trend component is
ignored when calculating predictions

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..
robust If FALSE (the default) the mean is used as the measure of central tendency and

the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Ignored

Details

Note that if your model included a latent temporal trend (i.e. if you used something other than
"None" for the trend_model argument), the predictions returned by this function will ignore au-
tocorrelation coefficients or GP length scale coefficients by assuming the process is stationary.
This approach is similar to how predictions are computed from other types of regression models
that can include correlated residuals, ultimately treating the temporal dynamics as random effect
nuisance parameters. The predict function is therefore more suited to scenario-based posterior
simulation from the GAM components of a mvgam model, while the hindcast / forecast functions
hindcast.mvgam() and forecast.mvgam() are better suited to generate predictions that respect
the temporal dynamics of estimated latent trends at the actual time points supplied in data and
newdata.

Value

Predicted values on the appropriate scale.

If summary = FALSE and type != "terms", the output is a matrix of dimension n_draw x n_observations
containing predicted values for each posterior draw in object.

If summary = TRUE and type != "terms", the output is an n_observations x E matrix. The num-
ber of summary statistics E is equal to 2 + length(probs): The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

If type = "terms" and summary = FALSE, the output is a named list containing a separate slot for
each effect, with the effects returned as matrices of dimension n_draw x 1. If summary = TRUE,
the output resembles that from predict.gam when using the call predict.gam(object, type =
"terms"”, se.fit = TRUE), where mean contributions from each effect are returned in matrix form
while standard errors (representing the interval: (max(probs) - min(probs)) / 2) are returned in
a separate matrix

predict.mvgam 143

Author(s)
Nicholas J Clark

See Also

hindcast.mvgam(), forecast.mvgam(), fitted.mvgam(), augment.mvgam()

Examples

Simulate 4 time series with hierarchical seasonality
and independent AR1 dynamic processes
set.seed(123)
simdat <- sim_mvgam(
seasonality = 'hierarchical',
prop_trend = 0.75,
trend_model = AR(),
family = gaussian()

Fit a model with shared seasonality
and AR(1) dynamics
mod1 <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
data = simdat$data_train,
family = gaussian(),
trend_model = AR(),
noncentred = TRUE,
chains = 2,
silent = 2

Generate predictions against observed data
preds <- predict(
mod1,
summary = TRUE
)
head(preds)

Generate predictions against test data
preds <- predict(

mod1,

newdata = simdat$data_test,

summary = TRUE

)
head(preds)

Use plot_predictions(), which relies on predict()
to more easily see how the latent AR(1) dynamics are
being ignored when using predict()
plot_predictions(
mod1,
by = c('time', 'series', 'series'),

144 print. mvgam

points = 0.5
)

Using the hindcast() function will give a more accurate
representation of how the AR(1) processes were estimated to give
accurate predictions to the in-sample training data
hc <- hindcast(mod1)
plot(hc) +
plot(hc, series = 2) +
plot(hc, series = 3)

print.mvgam Print a fitted mvgam object

Description

This function takes a fitted mvgam or jsdgam object and prints a quick summary.

Usage
S3 method for class 'mvgam'
print(x, ...)
Arguments
X list object returned from mvgam
Ignored
Details

A brief summary of the model’s call is printed

Value

A list is printed on-screen

Author(s)

Nicholas J Clark

print. mvgam_summary 145

print.mvgam_summary Print method for mvgam_summary objects

Description

Print method for mvgam_summary objects

Usage
S3 method for class 'mvgam_summary'
print(x, ...)
Arguments
X An object of class mvgam_summary
Additional arguments (ignored)
Value

Invisibly returns the input object after printing

PW Specify piecewise linear or logistic trends in mvgam models

Description

Set up piecewise linear or logistic trend models in mvgam. These functions do not evaluate their
arguments — they exist purely to help set up a model with particular piecewise trend models.

Usage

PW(
n_changepoints = 10,
changepoint_range = 0
changepoint_scale = 0.
growth = "linear”

8,
05,

Arguments

n_changepoints A non-negative integer specifying the number of potential changepoints. Po-
tential changepoints are selected uniformly from the first changepoint_range
proportion of timepoints in data. Default is 10.

changepoint_range
Proportion of history in data in which trend changepoints will be estimated.
Defaults to @. 8 for the first 80%.

146 PwW

changepoint_scale
Parameter modulating the flexibility of the automatic changepoint selection by
altering the scale parameter of a Laplace distribution. The resulting prior will
be double_exponential(@, changepoint_scale). Large values will allow
many changepoints and a more flexible trend, while small values will allow few
changepoints. Default is . @5.

growth Character string specifying either 'linear' or 'logistic' growth of the trend.
If 'logistic’, a variable labelled cap MUST be in data to specify the maxi-
mum saturation point for the trend (see details and examples in mvgam for more
information). Default is 'linear'.

Details

Offsets and intercepts: For each of these trend models, an offset parameter is included in the trend
estimation process. This parameter will be incredibly difficult to identify if you also include an
intercept in the observation formula. For that reason, it is highly recommended that you drop the
intercept from the formula (i.e. y ~ x + @ or y ~ x - 1, where x are your optional predictor terms).

Logistic growth and the cap variable: When forecasting growth, there is often some maximum
achievable point that a time series can reach. For example, total market size, total population size
or carrying capacity in population dynamics. It can be advantageous for the forecast to saturate at
or near this point so that predictions are more sensible.

This function allows you to make forecasts using a logistic growth trend model, with a specified
carrying capacity. Note that this capacity does not need to be static over time; it can vary with each
series X timepoint combination if necessary. But you must supply a cap value for each observation
in the data when using growth = 'logistic’.

For observation families that use a non-identity link function, the cap value will be internally
transformed to the link scale (i.e. your specified cap will be log-transformed if you are using a
poisson() or nb() family). It is therefore important that you specify the cap values on the scale of
your outcome. Note also that no missing values are allowed in cap.

Value
An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam.

Author(s)
Nicholas J Clark

References

Taylor, Sean J., and Benjamin Letham. "Forecasting at scale." The American Statistician 72.1
(2018): 37-45.

Examples

Example of logistic growth with possible changepoints
dNt = function(r, N, k) {
r*N=x(k-N)

PW

}

Nt = function(r, N, t, k) {
for (i in 1:(t - 1)) {
if (i %in% c(5, 15, 25, 41, 45, 60, 80)) {
N[i + 1] <= max(
1,
N[i] + dNt(r + runif(1, -0.1, @.1), N[i], k)
)
} else {
N[i + 1] <- max(1, N[i] + dNt(r, N[i], k))
3

}

set.seed(11)
expected <- Nt(0.004, 2, 100, 30)
plot(expected, xlab = 'Time')

y <- rpois(100, expected)
plot(y, xlab = 'Time")

mod_data <- data.frame(

y=y,

time = 1:100,

cap = 35,

series = as.factor('series_1")
)

plot_mvgam_series(data = mod_data)

mod <- mvgam(
y ~ 0,
trend_model = PW(growth = 'logistic'),
family = poisson(),
data = mod_data,

chains = 2,
silent = 2
)
summary (mod)

hc <- hindcast(mod)
plot(hc)

library(ggplot2)
mcmc_plot(mod, variable = 'delta_trend', regex = TRUE) +
scale_y_discrete(labels = mod$trend_model$changepoints) +
labs(
y = 'Potential changepoint',
x = 'Rate change'

)

how_to_cite(mod)

147

148 residuals.mvgam

residuals.mvgam Posterior draws of residuals from mvgam models

Description

This method extracts posterior draws of Dunn-Smyth (randomized quantile) residuals in the or-
der in which the data were supplied to the model. It includes additional arguments for obtaining
summaries of the computed residuals.

Usage

S3 method for class 'mvgam'

residuals(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)
Arguments

object An object of class mvgam

summary Should summary statistics be returned instead of the raw values? Default is

TRUE..
robust If FALSE (the default) the mean is used as the measure of central tendency and

the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Ignored

Details

This method gives residuals as Dunn-Smyth (randomized quantile) residuals. Any observations that
were missing (i.e. NA) in the original data will have missing values in the residuals.

Value

An array of randomized quantile residual values.
If summary = FALSE the output resembles those of posterior_epred.mvgam and predict.mvgam.

If summary = TRUE the output is an n_observations x E matrix. The number of summary statistics
E is equal to 2 + length(probs). The Estimate column contains point estimates (either mean or
median depending on argument robust), while the Est.Error column contains uncertainty esti-
mates (either standard deviation or median absolute deviation depending on argument robust). The
remaining columns starting with Q contain quantile estimates as specified via argument probs.

residual_cor.jsdgam 149

Author(s)
Nicholas J Clark

See Also

augment.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2

)

Extract posterior residuals
resids <- residuals(mod)
str(resids)

Or add them directly to the observed data, along with fitted values
augment (mod, robust = FALSE, probs = c(0.25, 0.75))

residual_cor. jsdgam Extract residual correlations based on latent factors

Description

Compute residual correlation estimates from Joint Species Distribution (jsdgam) or mvgam models
that either used latent factors or included correlated process errors directly

Usage

residual_cor(object, ...)

S3 method for class 'mvgam'
residual_cor(

object,

summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

150

residual_cor.jsdgam

S3 method for class 'jsdgam'

residual_cor(
object,

summary = TRUE,

robust

probs

Arguments

object

summary

robust

probs

Details

FALSE,
c(0.025, 0.975),

list object of class mvgam resulting from a call to jsdgam() or a call to mvgam()
in which either use_lv = TRUE or a multivariate process was used with cor =
TRUE (see RW() and VAR() for examples)

ignored

Should summary statistics be returned instead of the raw values? Default is
TRUE..

If FALSE (the default) the mean is used as a measure of central tendency. If TRUE,
the median is used instead. Only used if summary is TRUE

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

See mvgam_residcor-class for a description of the quantities that are computed and returned by
this function, along with key references.

Value

If summary = TRUE, a 1list of mvgam_residcor-class with the following components:

cor, cor_lower, cor_upper

sig_cor

A set of p X p correlation matrices, containing either the posterior median or
mean estimate, plus lower and upper limits of the corresponding credible inter-
vals supplied to probs

A p X p correlation matrix containing only correlations whose credible interval
does not contain zero. All other correlations are set to zero

prec, prec_lower, prec_upper

sig_prec

cov

A set of p x p precision matrices, containing either the posterior median or mean
estimate, plus lower and upper limits of the corresponding credible intervals
supplied to probs

A p X p precision matrix containing only precisions whose credible interval does
not contain zero. All other precisions are set to zero

A p X p posterior median or mean covariance matrix

residual_cor.jsdgam 151

trace The median/mean point estimator of the trace (sum of the diagonal elements) of
the residual covariance matrix cov

If summary = FALSE, this function returns a 1ist containing the following components:

all_cormat A Ngrqws X p X p array of posterior residual correlation matrix draws
all_covmat A Ngrqws X p X p array of posterior residual covariance matrix draws
all_presmat A Ngraws X p X p array of posterior residual precision matrix draws
all_trace A Ngrqws Vector of posterior covariance trace draws

References

Hui, F. K. C. (2016). boral — Bayesian Ordination and Regression Analysis of Multivariate Abun-
dance Data in r. Methods in Ecology and Evolution, 7(6), 744-750. doi:10.1111/2041210X.12514

See Also

jsdgam(), 1v_correlations(), mvgam_residcor-class

Examples

Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
formula = captures ~
Fixed effects of NDVI and mintemp, row effect as a GP of time
ndvi_mal2:series + mintemp:series + gp(time, k = 15),
factor_formula = ~ -1,
data = portal_data,
unit = time,
species = series,

family = poisson(),
n_lv = 2,
silent = 2,
chains = 2
)
Plot residual correlations
plot(
residual_cor(mod)
)

Compare to a residual ordination biplot
if(requireNamespace('ggrepel', quietly = TRUE)){
ordinate(mod)

}

https://doi.org/10.1111/2041-210X.12514

152

RW

RW

Specify autoregressive dynamic processes in mvgam

Description

Set up autoregressive or autoregressive moving average trend models in mvgam. These functions do
not evaluate their arguments — they exist purely to help set up a model with particular autoregressive

trend models.

Usage

RW(ma = FALSE, cor = FALSE, gr = NA, subgr = NA)

AR(p = 1, ma

CAR(p = 1)

= FALSE, cor = FALSE, gr = NA, subgr = NA)

VAR(ma = FALSE, cor = FALSE, gr = NA, subgr = NA)

Arguments

ma

cor

gr

subgr

Logical. Include moving average terms of order 1?7 Default is FALSE.

Logical. Include correlated process errors as part of a multivariate normal pro-
cess model? If TRUE and if n_series > 1 in the supplied data, a fully structured
covariance matrix will be estimated for the process errors. Default is FALSE.

An optional grouping variable, which must be a factor in the supplied data,
for setting up hierarchical residual correlation structures. If specified, this will
automatically set cor = TRUE and set up a model where the residual correlations
for a specific level of gr are modelled hierarchically:

Qgroup = aconglobal + (1 - O‘cor)Qgroup,localv

where Qgiobar is @ global correlation matrix, Qgroup local 1S a local deviation
correlation matrix and «.,, is a weighting parameter controlling how strongly
the local correlation matrix €24,y is shrunk towards the global correlation ma-
trix Qgopar (larger values of ., indicate a greater degree of shrinkage, i.e. a
greater degree of partial pooling).

When used within a VAR() model, this essentially sets up a hierarchical panel
vector autoregression where both the autoregressive and correlation matrices are
learned hierarchically. If gr is supplied then subgr must also be supplied.

A subgrouping factor variable specifying which element in data represents
the different time series. Defaults to series, but note that models that use the
hierarchical correlations, where the subgr time series are measured in each level
of gr, should not include a series element in data. Rather, this element will
be created internally based on the supplied variables for gr and subgr.

For example, if you are modelling temporal counts for a group of species (la-
belled as species in data) across three different geographical regions (labelled

RW 153

as region), and you would like the residuals to be correlated within regions, then
you should specify gr = region and subgr = species. Internally, mvgam() will
create the series element for the data using:

series = interaction(group, subgroup, drop = TRUE)

p A non-negative integer specifying the autoregressive (AR) order. Default is 1.
Cannot currently be larger than 3 for AR terms, and cannot be anything other
than 1 for continuous time AR (CAR) terms.

Details

Use vignette("mvgam_overview") to see the full details of available stochastic trend types in
mvgam, or view the rendered version on the package website at: https://nicholasjclark.github.io/mvgam/articles/mvgam_ove:

Value

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam.

Author(s)
Nicholas J Clark

Examples

A short example to illustrate CAR(1) models
Function to simulate CAR1 data with seasonality
sim_corcarl = function(n = 125,
phi = 0.5,
sigma = 2,
sigma_obs = 0.75) {
Sample irregularly spaced time intervals
time_dis <- c(1, runif(n - 1, @, 5))

Set up the latent dynamic process
x <- vector(length = n); x[1] <- -0.3
for (i in 2:n) {
zero-distances will cause problems in sampling, so mvgam uses a
minimum threshold; this simulation function emulates that process
if (time_dis[i] == @) {
x[i] <= rnorm(
1,
mean = (phi*1e-3) * x[i - 1],
sd = sigma * (1 - phi*(2 * 1e-3)) / (1 - phi*2)
)
} else {
x[i] <= rnorm(
1,
mean = (phi*time_dis[i]) * x[i - 11,
sd = sigma * (1 - phi*(2 * time_dis[i])) / (1 - phi*2)
)
}

154

Add 12-month seasonality

covl <- sin(2 * pi * (1:n) / 12)

cov2 <- cos(2 *x pi * (1:n) / 12)

betal <- runif(1, 0.3, 0.7)

beta2 <- runif(1, 0.2, 0.5)

seasonality <- betal * covl + beta2 * cov2

Take Gaussian observations with error and return
data.frame(
y = rnorm(n, mean = x + seasonality, sd = sigma_obs),
season = rep(1:12, 20)[1:n],
time = cumsum(time_dis)

Sample two time series
dat <- rbind(
dplyr::bind_cols(
sim_corcarl(phi = 0.65, sigma_obs = 0.55),
data.frame(series = 'seriesl')
),
dplyr::bind_cols(
sim_corcar1(phi = 0.8, sigma_obs = 0.35),
data.frame(series = 'series2')
)
) %>%
dplyr::mutate(series = as.factor(series))

mvgam with CAR(1) trends and series-level seasonal smooths
mod <- mvgam(
formula =y ~ -1,
trend_formula = ~ s(season, bs = 'cc', k =5, by = trend),
trend_model = CAR(),
priors = c(
prior(exponential(3), class = sigma),
prior(beta(4, 4), class = sigma_obs)

),
data = dat,
family = gaussian(),
chains = 2,
silent = 2
)

View usual summaries and plots

summary (mod)

conditional_effects(mod, type = 'expected')
plot(mod, type = 'trend', series = 1)
plot(mod, type = 'trend', series = 2)
plot(mod, type = 'residuals', series = 1)
plot(mod, type 'residuals’', series = 2)
mcme_plot(

RW

mod,
variable = 'arl',
regex = TRUE,
type = 'hist'

)

Now an example illustrating hierarchical dynamics

set.seed(123)

Simulate three species monitored in three different regions

simdatl <- sim_mvgam(
trend_model = VAR(cor
prop_trend = 0.95,
n_series = 3,
mu = c(1, 2, 3)

)

simdat2 <- sim_mvgam(
trend_model = VAR(cor
prop_trend = 0.95,
n_series = 3,
mu = c(1, 2, 3)

)

simdat3 <- sim_mvgam(
trend_model = VAR(cor
prop_trend = 0.95,
n_series = 3,
mu = c(1, 2, 3)

Set up the data but DO
all_dat <- rbind(
simdat1$data_train %>%
dplyr::mutate(region
simdat2$data_train %>%
dplyr::mutate(region
simdat3$data_train %>%
dplyr::mutate(region
) %%
dplyr: :mutate(
species = gsub('seri
species = as.factor(
region = as.factor(r
) %>%
dplyr::arrange(series,
dplyr::select(-series)

= TRUE),

= TRUE),

TRUE),

NOT include

= 'qld"),
= 'nsw'),

= 'vic')

'series’

es', 'species', series),

species),
egion)

time) %>%

Check priors for a hierarchical AR1 model

get_mvgam_priors(
formula = y ~ species,
trend_model = AR(gr =
data = all_dat

region, subgr

species),

155

156 score.mvgam_forecast

Fit the model
mod <- mvgam(
formula = y ~ species,
trend_model = AR(gr = region, subgr = species),
data = all_dat,
chains = 2,
silent = 2

)

Check standard outputs
summary (mod)

Inspect posterior estimates for the correlation weighting parameter
mcmc_plot(mod, variable = 'alpha_cor', type = 'hist')

score.mvgam_forecast Compute probabilistic forecast scores for mvgam models

Description

Compute probabilistic forecast scores for mvgam models

Usage
S3 method for class 'mvgam_forecast'
score(
object,
score = "crps”,
log = FALSE,
weights,

interval_width = 0.9,
n_cores = 1,

)
score(object, ...)
Arguments
object mvgam_forecast object. See forecast.mvgam().
score character specifying the type of proper scoring rule to use for evaluation. Op-

tions are: sis (i.e. the Scaled Interval Score), energy, variogram, elpd (i.e. the
Expected log pointwise Predictive Density), drps (i.e. the Discrete Rank Proba-
bility Score), crps (the Continuous Rank Probability Score) or brier (the latter
of which is only applicable for bernoulli models. Note that when choosing
elpd, the supplied object must have forecasts on the 1ink scale so that expec-
tations can be calculated prior to scoring. If choosing brier, the object must

score.mvgam_forecast 157

have forecasts on the expected scale (i.e. probability predictions). For all other
scores, forecasts should be supplied on the response scale (i.e. posterior pre-
dictions)

log logical. Should the forecasts and truths be logged prior to scoring? This is
often appropriate for comparing performance of models when series vary in
their observation ranges. Ignored if score = 'brier’

weights optional vector of weights (where length(weights) == n_series) for weight-
ing pairwise correlations when evaluating the variogram score for multivariate
forecasts. Useful for down-weighting series that have larger magnitude ob-
servations or that are of less interest when forecasting. Ignored if score !=
'variogram'

interval_width proportional value on [@.05,0.95] defining the forecast interval for calculating
coverage and, if score = 'sis', for calculating the interval score. Ignored if
score = 'brier'

n_cores integer specifying number of cores for calculating scores in parallel

Ignored

Value

A list containing scores and interval coverages per forecast horizon. If score %in% c('drps’,
‘crps', 'elpd', 'brier"'), the list will also contain return the sum of all series-level scores per
horizon. If score %in% c('energy', 'variogram'), no series-level scores are computed and the
only score returned will be for all series. For all scores apart from elpd and brier, the in_interval
column in each series-level slot is a binary indicator of whether or not the true value was within the
forecast’s corresponding posterior empirical quantiles. Intervals are not calculated when using elpd
because forecasts will only contain the linear predictors

Author(s)
Nicholas J Clark

References
Gneiting, T. and Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association, 102(477), 359-378. doi:10.1198/016214506000001437
See Also

forecast.mvgam, ensemble

Examples

Simulate observations for three count-valued time series
data <- sim_mvgam()

Fit a dynamic model using 'newdata' to automatically produce forecasts
mod <- mvgam(

y ~ 1,

trend_model = RW(),

https://doi.org/10.1198/016214506000001437

158 series_to_mvgam

data = datas$data_train,
newdata = data$data_test,
chains = 2,

silent = 2

Extract forecasts into a 'mvgam_forecast' object
fc <- forecast(mod)
plot(fc)

Compute Discrete Rank Probability Scores and .90 interval coverages
fc_scores <- score(fc, score = 'drps')
str(fc_scores)

An example using binary data
data <- sim_mvgam(family = bernoulli())

mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
data = data$data_train,
newdata = data$data_test,
family = bernoulli(),
chains = 2,
silent = 2

Extract forecasts on the expectation (probability) scale
fc <- forecast(mod, type = 'expected')
plot(fc)

Compute Brier scores
fc_scores <- score(fc, score = 'brier')
str(fc_scores)

series_to_mvgam Convert timeseries object to format necessary for mvgam models

Description

This function converts univariate or multivariate time series (xts or ts objects) to the format nec-
essary for mvgam.

Usage

series_to_mvgam(series, freq, train_prop = 0.85)

sim_mvgam 159

Arguments
series xts or ts object to be converted to mvgam format
freq integer. The seasonal frequency of the series
train_prop numeric stating the proportion of data to use for training. Should be between
0.25and 0.95
Value

A list object containing outputs needed for mvgam, including ’data_train’ and ’data_test’

Examples

A ts object example

data("sunspots”)

series <- cbind(sunspots, sunspots)
colnames(series) <- c('blood', 'bone')
head(series)

series_to_mvgam(series, frequency(series), 0.85)

An xts object example
library(xts)
dates <- seq(as.Date("2001-05-01"), length = 30, by = "quarter"”)

data <- cbind(

c(gas = rpois(30, cumprod(1l + rnorm(30, mean = 0.01, sd = 0.001)))),
c(oil = rpois(30@, cumprod(1 + rnorm(30, mean = .01, sd = 0.001))))

)

series <- xts(x = data, order.by = dates)

colnames(series) <- c('gas', 'oil')

head(series)

series_to_mvgam(series, freq = 4, train_prop = 0.85)

sim_mvgam Simulate a set of time series for modelling in mvgam

Description

This function simulates sets of time series data for fitting a multivariate GAM that includes shared
seasonality and dependence on State-Space latent dynamic factors. Random dependencies among
series, i.e. correlations in their long-term trends, are included in the form of correlated loadings on
the latent dynamic factors

160

Usage

sim_mvgam(
T =100,
n_series = 3,

sim_mvgam

seasonality = "shared”,
use_lv = FALSE,

n_lv = 0,

trend_model =

RWQO),

drift = FALSE,

prop_trend =
trend_rel,
freq = 12,

0.2,

family = poisson(),

phi,

shape,
sigma,

nu,

mu,
prop_missing
prop_train =

Arguments

T
n_series

seasonality
use_lv

n_lv

trend_model

Q.

0,
85

integer. Number of observations (timepoints)
integer. Number of discrete time series

character. Either shared, meaning that all series share the exact same seasonal
pattern, or hierarchical, meaning that there is a global seasonality but each
series’ pattern can deviate slightly

logical. If TRUE, use dynamic factors to estimate series’ latent trends in a
reduced dimension format. If FALSE, estimate independent latent trends for each
series

integer. Number of latent dynamic factors for generating the series’ trends.
Defaults to @, meaning that dynamics are estimated independently for each series

character specifying the time series dynamics for the latent trend. Options are:

* None (no latent trend component; i.e. the GAM component is all that
contributes to the linear predictor, and the observation process is the only
source of error; similarly to what is estimated by gam)

* RW (random walk with possible drift)

* ART (with possible drift)

* AR2 (with possible drift)

* AR3 (with possible drift)

* VAR1 (contemporaneously uncorrelated VAR1)

* VARTcor (contemporaneously correlated VARI)

* GP (Gaussian Process with squared exponential kernel)

sim_mvgam

drift
prop_trend

trend_rel
freq
family

phi

shape

sigma

nu

mu

prop_missing

prop_train

Value

161

See mvgam_trends for more details
logical, simulate a drift term for each trend

numeric. Relative importance of the trend for each series. Should be between @
and 1

Deprecated. Use prop_trend instead
integer. The seasonal frequency of the series

family specifying the exponential observation family for the series. Currently
supported families are: nb(), poisson(), bernoulli(), tweedie(), gaussian(),
betar(), lognormal (), student () and Gamma()

vector of dispersion parameters for the series (i.e. size for nb() or phi for
betar()). If length(phi) < n_series, the first element of phi will be repli-
cated n_series times. Defaults to 5 for nb() and tweedie(); 10 for betar ()

vector of shape parameters for the series (i.e. shape for gamma()). If length(shape)
< n_series, the first element of shape will be replicated n_series times. De-
faults to 10

vector of scale parameters for the series (i.e. sd for gaussian() or student(),
log(sd) for lognormal()). If length(sigma) < n_series, the first element of
sigma will be replicated n_series times. Defaults to @.5 for gaussian() and
student(); 0.2 for lognormal()

vector of degrees of freedom parameters for the series (i.e. nu for student()).
If length(nu) < n_series, the first element of nu will be replicated n_series
times. Defaults to 3

vector of location parameters for the series. If length(mu) < n_series, the
first element of mu will be replicated n_series times. Defaults to small random
values between -0.5 and 0.5 on the link scale

numeric stating proportion of observations that are missing. Should be between
@ and 0. 8, inclusive

numeric stating the proportion of data to use for training. Should be between
0.2and 1

A list object containing outputs needed for mvgam, including ’data_train’ and ’data_test’, as well
as some additional information about the simulated seasonality and trend dependencies

References

Clark, N. J. and Wells, K. (2022). Dynamic generalised additive models (DGAMs) for fore-
casting discrete ecological time series. Methods in Ecology and Evolution, 13(11), 2388-2404.
doi:10.1111/2041210X.13974

Examples

Simulate series with observations bounded at @ and 1 (Beta responses)
sim_data <- sim_mvgam(
family = betar(),

https://doi.org/10.1111/2041-210X.13974

162 stability.mvgam

trend_model = RW(Q),
prop_trend = 0.6
)

plot_mvgam_series(data = sim_data$data_train, series = 'all')

Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(

family = nb(),

trend_model = RW(),

prop_trend = 0.6,

phi = 10
)
plot_mvgam_series(data = sim_data$data_train, series = 'all')
stability.mvgam Calculate measures of latent VAR community stability
Description

Compute reactivity, return rates and contributions of interactions to stationary forecast variance
from mvgam models with Vector Autoregressive dynamics.

Usage

stability(object, ...)

S3 method for class 'mvgam'

stability(object, ...)
Arguments
object list object of class mvgam resulting from a call to mvgam() that used a Vector
Autoregressive latent process model (either as VAR(cor = FALSE) or VAR(cor =
TRUE))
Ignored
Details

These measures of stability can be used to assess how important inter-series dependencies are to the
variability of a multivariate system and to ask how systems are expected to respond to environmental
perturbations. Using the formula for a latent VAR(1) as:

pe ~ MVNormal(A(pi—1), %)

this function will calculate the long-term stationary forecast distribution of the system, which has
mean L, and variance ¥, to then calculate the following quantities:

stability.mvgam 163

* prop_int: Proportion of the volume of the stationary forecast distribution that is attributable
to lagged interactions:
det(A)?

\item “prop_int_adj: Same as “prop_int® but scaled by the number of
series \egn{p}:
\deqgn{ det(A)*{2/p} }

\item “prop_int_offdiag™: Sensitivity of “prop_int® to inter-series
interactions (off-diagonals of \egn{A}):
\degn{ [2~det(A) (A*{-1})*T]1 }

\item “prop_int_diag™: Sensitivity of “prop_int™ to intra-series
interactions (diagonals of \eqn{A}):
\degn{ [2~det(A) (A*{-1})*T] }

\item “prop_cov_offdiag™: Sensitivity of \egn{\Sigma_{\infty}} to
inter-series error correlations:
\degn{ [2~det(\Sigma_{\infty}) (\Sigma_{\infty}*{-13})"T] }

\item “prop_cov_diag™: Sensitivity of \egn{\Sigma_{\infty}} to error
variances:
\degn{ [2~det(\Sigma_{\infty}) (\Sigma_{\infty}*{-1})*T] }

\item “reactivity : Degree to which the system moves away from a stable
equilibrium following a perturbation. If \egn{\sigma_{max}(A)} is the
largest singular value of \egn{A}:

\degn{ \log\sigma_{max}(A) }

\item “mean_return_rate”: Asymptotic return rate of the mean of the
transition distribution to the stationary mean:
\degn{ \max(\lambda_{A}) }

\item “var_return_rate’: Asymptotic return rate of the variance of the
transition distribution to the stationary variance:
\degn{ \max(\lambda_{A \otimes A}) }

Major advantages of using mvgam to compute these metrics are that well-calibrated uncertainties
are available and that VAR processes are forced to be stationary. These properties make it simple
and insightful to calculate and inspect aspects of both long-term and short-term stability.

You can also inspect interactions among the time series in a latent VAR process using irf for
impulse response functions or fevd for forecast error variance decompositions.

Value

A data. frame containing posterior draws for each stability metric.

Author(s)
Nicholas J Clark

164 stability. mvgam

References

AR Ives, B Dennis, KL Cottingham & SR Carpenter (2003). Estimating community stability and
ecological interactions from time-series data. Ecological Monographs, 73, 301-330.

See Also
VAR, irf, fevd

Examples

Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(

family = gaussian(),

n_series = 4,

trend_model = VAR(cor = TRUE),

prop_trend = 1
)

plot_mvgam_series(data = simdat$data_train, series = 'all')

Fit a model that uses a latent VAR(1)
mod <- mvgam(

y ~ -1,

trend_formula = ~ 1,

trend_model = VAR(cor = TRUE),

family = gaussian(),

data = simdat$data_train,

chains = 2,

silent = 2

)

Calculate stability metrics for this system
metrics <- stability(mod)

Proportion of stationary forecast distribution attributable to interactions
hist(

metrics$prop_int,

xlim = c(o, 1),

xlab = 'Prop_int',

main = ,
col = '"#B97C7C',
border = 'white'

)

Inter- vs intra-series interaction contributions
layout(matrix(1:2, nrow = 2))
hist(

metrics$prop_int_offdiag,

xlim = c(o, 1),

xlab = "',

main = 'Inter-series interactions',

col = '"#B97C7C',

summary.mvgam

border = 'white'

)

hist(
metrics$prop_int_diag,
xlim = c(o, 1),
xlab = 'Contribution to interaction effect',
main = 'Intra-series interactions (density dependence)',
col = 'darkblue',
border = 'white'

)

layout (1)

Inter- vs intra-series contributions to forecast variance

layout(matrix(1:2, nrow = 2))

hist(

metrics$prop_cov_offdiag,

xlim =
xlab =
main =
col ="'
border

hist(

c(e, 1),
'Inter-series covariances',
#B97C7C"',
= 'white'

metrics$prop_cov_diag,

xlim =
xlab =
main =
col ="'
border

)
layout (1)

c(o, 1),

'Contribution to forecast variance',
'Intra-series variances',

darkblue',

= 'white'

Reactivity: system response to perturbation

hist(

metrics$reactivity,
main = '',

xlab = 'Reactivity',
col = '#B97C7C',

border = 'white',

xlim = c(

-1 x max(abs(metrics$reactivity)),

max (abs(metrics$reactivity))

)
)

abline(v

=0, lwd = 2.5)

165

summary . mvgam

Summary for a fitted mvgam models

166 summary.mvgam

Description

These functions take a fitted mvgam or jsdgam object and return various useful summaries

Usage

S3 method for class 'mvgam'
summary(object, include_betas = TRUE, smooth_test = TRUE, digits = 2, ...)

S3 method for class 'mvgam_prefit'
summary (object, ...)

S3 method for class 'mvgam'

coef(object, summarise = TRUE, ...)
Arguments
object list object returned from mvgam

include_betas Logical. Print a summary that includes posterior summaries of all linear pre-
dictor beta coefficients (including spline coefficients)? Defaults to TRUE but use
FALSE for a more concise summary

smooth_test Logical. Compute estimated degrees of freedom and approximate p-values for
smooth terms? Defaults to TRUE, but users may wish to set to FALSE for complex
models with many smooth or random effect terms

digits The number of significant digits for printing out the summary; defaults to 2.
Ignored
summarise logical. Summaries of coefficients will be returned if TRUE. Otherwise the full

posterior distribution will be returned

Details

summary.mvgam and summary.mvgam_prefit return brief summaries of the model’s call, along
with posterior intervals for some of the key parameters in the model. Note that some smooths have
extra penalties on the null space, so summaries for the rho parameters may include more penalty
terms than the number of smooths in the original model formula. Approximate p-values for smooth
terms are also returned, with methods used for their calculation following those used for mgcv
equivalents (see summary.gam for details). The Estimated Degrees of Freedom (edf) for smooth
terms is computed using either edf. type = 1 for models with no trend component, or edf. type =
0 for models with trend components. These are described in the documentation for jagam. Exper-
iments suggest these p-values tend to be more conservative than those that might be returned from
an equivalent model fit with summary . gam using method = 'REML'

coef.mvgam returns either summaries or full posterior estimates for GAM component coefficients

Value

For summary.mvgam, an object of class mvgam_summary containing:

* model_spec: Model specification details (formulas, family, dimensions)

summary.mvgam_fevd 167

* parameters: Parameter estimates and significance tests
e diagnostics: MCMC convergence diagnostics
* sampling_info: Sampling algorithm details

For summary.mvgam_prefit, a list is printed on-screen showing the model specifications

For coef.mvgam, either a matrix of posterior coefficient distributions (if summarise == FALSE or
data.frame of coefficient summaries)

Author(s)
Nicholas J Clark
Examples
simdat <- sim_mvgam(seasonality = "hierarchical”)

mod <- mvgam(
y ~ series +

s(season, bs = "cc", k = 6) +
s(season, series, bs = "fs", k = 4),
data = simdat$data_train,
chains = 2,
silent = 2

)

mod_summary <- summary(mod)
mod_summary

summary .mvgam_fevd Posterior summary of forecast error variance decompositions

Description

This function takes an mvgam_fevd object and calculates a posterior summary of the error variance
decompositions of each series, at all horizons

Usage
S3 method for class 'mvgam_fevd'
summary(object, probs = c(0.025, ©.975), ...)
Arguments
object an object of class mvgam_fevd obtained using the fevd() function. This object
will contain draws from the posterior distribution of the forecast error variance
decompositions.
probs The upper and lower percentiles to be computed by the quantile function, in

addition to the median

ignored

168 summary.mvgam_forecast

Value
A long-format tibble / data. frame reporting the posterior median, upper and lower percentiles of
the error variance decompositions of each series at all horizons.

Author(s)
Nicholas J Clark

See Also

fevd, plot.mvgam_fevd

summary .mvgam_forecast
Posterior summary of hindcast and forecast objects

Description

This function takes an mvgam_forecast object and calculates a posterior summary of the hindcast
and forecast distributions of each series, along with any true values that were included in data and
newdata if type = 'response' was used in the call to hindcast() or function()

Usage
S3 method for class 'mvgam_forecast'
summary (object, probs = c(0.025, 0.975), ...)
Arguments
object an object of class mvgam_forecast obtained using either the hindcast() or

function() function. This object will contain draws from the posterior distri-
bution of hindcasts and forecasts.

probs The upper and lower percentiles to be computed by the quantile function, in
addition to the median

ignored

Value

A long-format tibble / data. frame reporting the posterior median, upper and lower percentiles of
the predictions for each series at each of the timepoints that were originally supplied in data and,
optionally, in newdata.

Author(s)
Nicholas J Clark

summary.mvgam_irf 169

See Also

forecast.mvgam, plot.mvgam_forecast

summary.mvgam_irf Posterior summary of impulse responses

Description

This function takes an mvgam_irf object and calculates a posterior summary of the impulse re-
sponses of each series to shocks from each of the other series, at all horizons

Usage
S3 method for class 'mvgam_irf'
summary (object, probs = c(0.025, 0.975), ...)
Arguments
object an object of class mvgam_irf obtained using the irf () function. This object

will contain draws from the posterior distribution of the impulse responses.

probs The upper and lower percentiles to be computed by the quantile function, in
addition to the median

ignored

Value
A long-format tibble / data. frame reporting the posterior median, upper and lower percentiles of
the impulse responses of each series to shocks from each of the other series at all horizons.
Author(s)

Nicholas J Clark

See Also

irf, plot.mvgam_irf

170 tidy.mvgam

tidy.mvgam Tidy an mvgam object’s parameter posteriors

Description

Get parameters’ posterior statistics, implementing the generic tidy from the package broom.

Usage
S3 method for class 'mvgam'
tidy(x, probs = c(0.025, 0.5, 0.975), ...)
Arguments
X An object of class mvgam.
probs The desired probability levels of the parameters’ posteriors. Defaults to c(0.025,

0.5, 0.975),1i.e. 2.5%, 50%, and 97.5%.

Unused, included for generic consistency only.

Details

The parameters are categorized by the column "type". For instance, the intercept of the observation
model (i.e. the "formula" arg to mvgam()) has the "type" "observation_beta". The possible "type"s
are:

* observation_family_extra_param: any extra parameters for your observation model, e.g. sigma
for a gaussian observation model. These parameters are not directly derived from the latent
trend components (contrast to mu).

* observation_beta: betas from your observation model, excluding any smooths. If your formula
wasy ~ x1 +s(x2, bs="cr"), then your intercept and x1’s beta would be categorized as this.

» random_effect_group_level: Group-level random effects parameters, i.e. the mean and sd of
the distribution from which the specific random intercepts/slopes are considered to be drawn
from.

» random_effect_beta: betas for the individual random intercepts/slopes.
* trend_model_param: parameters from your trend_model.
* trend_beta: analog of "observation_beta", but for any trend_formula.
* trend_random_effect_group_level: analog of "random_effect_group_level", but for any trend_formula.
* trend_random_effect_beta: analog of "random_effect_beta", but for any trend_formula.
Additionally, GP terms can be incorporated in several ways, leading to different "type"s (or ab-
sence!):
* s(bs ="gp"): No parameters returned.
* gp() in formula: "type" of "observation_param".
* gp() in trend_formula: "type" of "trend_formula_param".

* GP() in trend_model: "type" of "trend_model_param".

update.mvgam 171

Value
A tibble containing:

» "parameter": The parameter in question.

* "type": The component of the model that the parameter belongs to (see details).
* "mean": The posterior mean.

* "sd": The posterior standard deviation.

* percentile(s): Any percentiles of interest from these posteriors.

See Also

Other tidiers: augment.mvgam()

Examples

Not run:

set.seed(Q)

simdat <- sim_mvgam(
T = 100,
n_series = 3,
trend_model = AR(),
prop_trend = 0.75,
family = gaussian()

)

simdat$data_train$x <- rnorm(nrow(simdat$data_train))
simdat$data_train$year_fac <- factor(simdat$data_train$year)

mod <- mvgam(

y ~ -1 + s(time, by = series, bs = 'cr', k = 20) + x,
trend_formula = ~ s(year_fac, bs = 're') - 1,
trend_model = AR(cor = TRUE),
family = gaussian(),
data = simdat$data_train,
silent = 2

)

tidy(mod, probs = c(0.2, 0.5, 0.8))

End(Not run)

update.mvgam Update an existing mvgam model object

Description

This function allows a previously fitted mvgam model to be updated.

172

Usage

S3 method for class 'mvgam'
update(

)

object,
formula,
trend_formula,
knots,
trend_knots,
trend_model,
family,
share_obs_params,
data,

newdata,
trend_map,
use_lv,

n_lv,

priors,
chains,
burnin,
samples,
threads,
algorithm,

1fo = FALSE,

S3 method for class
update(

object,
formula,
factor_formula,
knots,
factor_knots,
data,

newdata,

n_lv,

family,
share_obs_params,
priors,

chains,

burnin,
samples,
threads,
algorithm,

1fo = FALSE,

' jsdgam'

update.mvgam

update.mvgam

Arguments

object

formula

trend_formula

knots

trend_knots

trend_model

family

173

list object returned from mvgam. See mvgam()

Optional new formula object. Note, mvgam currently does not support dynamic
formula updates such as removal of specific terms with - term. When updating,
the entire formula needs to be supplied.

An optional formula object specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture
process model evolution separately from the observation model.

Important notes:

 Should not have a response variable specified on the left-hand side (e.g., ~
season + s(year))

* Use trend instead of series for effects that vary across time series

* Only available for RW(), AR() and VAR() trend models

* In nmix() family models, sets up linear predictor for latent abundance

» Consider dropping one intercept using - 1 convention to avoid estimation
challenges

An optional 1ist containing user specified knot values for basis construction.
For most bases the user simply supplies the knots to be used, which must match
up with the k value supplied. Different terms can use different numbers of knots,
unless they share a covariate.

As for knots above, this is an optional 1ist of knot values for smooth functions
within the trend_formula.
character or function specifying the time series dynamics for the latent trend.
Available options:

* None: No latent trend component (GAM component only, like gam)

* ZMVN or ZMVN(): Zero-Mean Multivariate Normal (Stan only)

e 'RW' or RW(): Random Walk

e 'ART', 'AR2', 'AR3' or AR(p =1, 2, 3): Autoregressive models

* '"CAR1' or CAR(p = 1): Continuous-time AR (Ornstein—Uhlenbeck process)

* '"VAR1' or VAR(): Vector Autoregressive (Stan only)

e 'PWlogistic’', 'PWlinear' or PW(): Piecewise trends (Stan only)

e 'GP' or GP(): Gaussian Process with squared exponential kernel (Stan

only)

Additional features:

* Moving average and/or correlated process error terms available for most

types (e.g., RW(cor = TRUE) for multivariate Random Walk)

* Hierarchical correlations possible for structured data

* See mvgam_trends for details and ZMVN() for examples
family specifying the exponential observation family for the series.
Supported families:

» gaussian(): Real-valued data

* betar(): Proportional data on (@, 1)

174

update.mvgam

e lognormal(): Non-negative real-valued data
e student_t(): Real-valued data

* Gamma(): Non-negative real-valued data

e bernoulli(): Binary data

¢ poisson(): Count data (default)

* nb(): Overdispersed count data

e binomial(): Count data with imperfect detection when number of trials is
known (use cbind() to bind observations and trials)

* beta_binomial(): As binomial() but allows for overdispersion

* nmix(): Count data with imperfect detection when number of trials is un-
known (State-Space N-Mixture model with Poisson latent states and Bino-
mial observations)

See mvgam_families for more details.

share_obs_params

data

newdata

trend_map

logical. If TRUE and the family has additional family-specific observation
parameters (e.g., variance components, dispersion parameters), these will be
shared across all outcome variables. Useful when multiple outcomes share prop-
erties. Default is FALSE.

A dataframe or list containing the model response variable and covariates
required by the GAM formula and optional trend_formula.
Required columns for most models:

* series: A factor index of the series IDs (number of levels should equal
number of unique series labels)

* time: numeric or integer index of time points. For most dynamic trend
types, time should be measured in discrete, regularly spaced intervals (i.e.,
c(1, 2, 3, ...)). Irregular spacing is allowed for trend_model = CAR(1),
but zero intervals are adjusted to 1e-12 to prevent sampling errors.

Special cases:

* Models with hierarchical temporal correlation (e.g., AR(gr = region, subgr
= species)) should NOT include a series identifier

* Models without temporal dynamics (trend_model = 'None' or trend_model
= ZMVN()) don’t require a time variable

Optional dataframe or list of test data containing the same variables as in
data. If included, observations in variable y will be set to NA when fitting the
model so that posterior simulations can be obtained.

Optional data. frame specifying which series should depend on which latent
trends. Enables multiple series to depend on the same latent trend process with
different observation processes.
Required structure:
e Column series: Single unique entry for each series (matching factor levels
in data)
* Column trend: Integer values indicating which trend each series depends
on

Notes:

update.mvgam 175

 Sets up latent factor model by enabling use_lv = TRUE
* Process model intercept is NOT automatically suppressed
* Not yet supported for continuous time models (CAR())
use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-

duced dimension format. Only available for RW(), AR() and GP () trend models.
Default is FALSE. See 1v_correlations for examples.

n_lv integer specifying the number of latent dynamic factors to use if use_lv ==
TRUE. Cannot exceed n_series. Default is min(2, floor(n_series / 2)).

priors An optional data. frame with prior definitions or, preferably, a vector of brmsprior
objects (see prior()). See get_mvgam_priors() and Details for more infor-
mation.

chains integer specifying the number of parallel chains for the model. Ignored for

variational inference algorithms.

burnin integer specifying the number of warmup iterations to tune sampling algo-
rithms. Ignored for variational inference algorithms.

samples integer specifying the number of post-warmup iterations for sampling the pos-
terior distribution.

threads integer. Experimental option for within-chain parallelisation in Stan using
reduce_sum. Recommended only for experienced Stan users with slow mod-
els. Currently works for all families except nmix() and when using Cmdstan
backend.

algorithm Character string naming the estimation approach:
e "sampling": MCMC (default)
* "meanfield”: Variational inference with factorized normal distributions
e "fullrank": Variational inference with multivariate normal distribution
e "laplace”: Laplace approximation (cmdstanr only)
* "pathfinder”: Pathfinder algorithm (cmdstanr only)
Can be set globally via "brms.algorithm” option. Limited testing suggests

"meanfield” performs best among non-MCMC approximations for dynamic
GAMs.

1fo logical. Indicates whether this is part of Ifo_cv.mvgam call. Returns lighter
model version for speed. Users should leave as FALSE.

Other arguments to be passed to mvgam or jsdgam
factor_formula Optional new formula object for the factor linear predictors

factor_knots An optional 1ist containing user specified knot values to be used for basis con-
struction of any smooth terms in factor_formula. For most bases the user
simply supplies the knots to be used, which must match up with the k value sup-
plied (note that the number of knots is not always just k). Different terms can
use different numbers of knots, unless they share a covariate

Value

A list object of class mvgam containing model output, the text representation of the model file, the
mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth

176 update.mvgam

residuals for each outcome variable and key information needed for other functions in the pack-
age. See mvgam-class for details. Use methods(class = "mvgam”) for an overview on available
methods.

A list object of class mvgam containing model output, the text representation of the model file,
the mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-
Smyth residuals for each series and key information needed for other functions in the package. See
mvgam-class for details. Use methods(class = "mvgam”) for an overview on available methods.

Author(s)
Nicholas J Clark

Examples

Simulate some data and fit a Poisson AR1 model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
y ~ s(season, bs = 'cc'),
trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2

)

summary (mod)
conditional_effects(mod, type = 'link')

Update to an AR2 model

updated_mod <- update(
mod,
trend_model = AR(p = 2),
noncentred = TRUE

)

summary (updated_mod)
conditional_effects(updated_mod, type = 'link')

Now update to a Binomial AR1 by adding information on trials
requires that we supply newdata that contains the 'trials' variable
simdat$data_train$trials <- max(simdat$data_traingy) + 15

updated_mod <- update(
mod,
formula = cbind(y, trials) ~ s(season, bs = 'cc'),
noncentred = TRUE,
data = simdat$data_train,
family = binomial()
)

summary (updated_mod)
conditional_effects(updated_mod, type = 'link')

ZMVN

177

ZMVN

Specify correlated residual processes in mvgam

Description

Set up latent correlated multivariate Gaussian residual processes in mvgam. This function does not
evaluate its arguments — it exists purely to help set up a model with particular error processes

Usage

ZMVN(unit = time, gr = NA, subgr = series)

Arguments

unit

gr

subgr

The unquoted name of the variable that represents the unit of analysis in data
over which latent residuals should be correlated. This variable should be either
a numeric or integer variable in the supplied data. Defaults to time to be
consistent with other functionalities in mvgam, though note that the data need
not be time series in this case. See examples below for further details and expla-
nations

An optional grouping variable, which must be a factor in the supplied data,
for setting up hierarchical residual correlation structures. If specified, this will
automatically set up a model where the residual correlations for a specific level
of gr are modelled hierarchically:

Qgroup = pleobal + (1 - p)Qgroup,local,

where (giopq1 15 a global correlation matrix, group,iocal 1 @ local deviation
correlation matrix, and p is a weighting parameter controlling how strongly the
local correlation matrix €24,0up is shrunk towards the global correlation matrix
Qgiobar- If gr is supplied then subgr must also be supplied

A subgrouping factor variable specifying which element in data represents
the different observational units. Defaults to series to be consistent with other
functionalities in mvgam, though note that the data need not be time series in
this case

Models that use the hierarchical correlations (by supplying a value for gr) should
not include a series element in data. Rather, this element will be created in-
ternally based on the supplied variables for gr and subgr

For example, if you are modelling counts for a group of species (labelled as
species in the data) across sampling sites (labelled as site in the data) in
three different geographical regions (labelled as region), and you would like
the residuals to be correlated within regions, then you should specify unit =
site, gr =region, and subgr = species

Internally, mvgam() will appropriately order the data by unit (in this case, by
site) and create the series element for the data using something like:

series = as.factor(paste@(group, '_', subgroup))

178

Value

ZMVN

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing

functions in mvgam

Examples

Simulate counts of four species over ten sampling locations

site_dat <- data.frame(
site = rep(1:10, 4),

species = as.factor(sort(rep(letters[1:4], 10))),

y = c¢(NA, rpois(39, 3))
)
head(site_dat)

Set up a correlated residual (i.e. Joint Species Distribution) model

trend_model <- ZMVN(unit = site, subgr
mod <- mvgam(
y ~ species,
trend_model = ZMVN(unit = site, subgr
data = site_dat,
chains = 2,
silent = 2

)

Inspect the estimated species-species residual covariances
mcme_plot(mod, variable = 'Sigma', regex = TRUE, type = 'hist')

A hierarchical correlation example
Sigma <- matrix(
c(1, -0.4, 0.5,

-0.4, 1, 0.3,

0.5, 0.3, 1),
byrow = TRUE,
nrow = 3

)

make_site_dat <- function(...) {
errors <- mgcv::rmvn(

n = 30,
mu = c(0.6, 0.8, 1.8),
V = Sigma

)

site_dat <- do.call(rbind, lapply(1:3, function(spec) {

data.frame(

y = rpois(30, lambda = exp(errors[, specl)),
species = paste@('species', spec),

site = 1:30
)
m
site_dat

ZMVN 179

site_dat <- rbind(
make_site_dat() %>%
dplyr::mutate(group = 'groupl'),
make_site_dat() %>%
dplyr::mutate(group = 'group2')
) %>%
dplyr: :mutate(
species = as.factor(species),
group = as.factor(group)

)

Fit the hierarchical correlated residual model

mod <- mvgam(
y ~ species,
trend_model = ZMVN(unit = site, gr = group, subgr = species),
data = site_dat

)

Inspect the estimated species-species residual covariances
mcmc_plot(mod, variable = 'Sigma', regex = TRUE, type = 'hist')

Index

+ datasets
all_neon_tick_data, 5
portal_data, 129

x tidiers
augment.mvgam, 5
tidy.mvgam, 170

‘mgcv‘ (index-mvgam), 42

add_residuals, 48, 72

add_residuals (add_residuals.mvgam), 4
add_residuals.mvgam, 4
all_neon_tick_data, 5

and (index-mvgam), 42

AR, 105

AR (RW), 152

as.array.mvgam (mvgam_draws), 87
as.data.frame.mvgam (mvgam_draws), 87
as.matrix.mvgam (mvgam_draws), 87
as_draws.mvgam (mvgam_draws), 87
as_draws_array.mvgam (mvgam_draws), 87
as_draws_df.mvgam (mvgam_draws), 87
as_draws_list.mvgam (mvgam_draws), 87
as_draws_matrix.mvgam (mvgam_draws), 87
as_draws_rvars.mvgam (mvgam_draws), 87
augment.mvgam, 5, 149, 171
augment.mvgam(), 76, 143

bam, 66

bayesplot, 139

bernoulli, 91

bernoulli (mvgam_families), 90
beta_binomial, 91

beta_binomial (mvgam_families), 90
betar, 91

betar (mvgam_families), 90
binomial, 91

CAR, 105
CAR (RW), 152
citation, 4/

code, 7

coef.mvgam (summary.mvgam), 166
coefficient (index-mvgam), 42
compare_mvgams, 56

compare_mvgams (evaluate_mvgams), 15
conditional_effects.mvgam, 8, 111, 126
conditional_effects.mvgam(), 76

datagrid(), 101

dplyr::filter(), 101

draw.mvgam (gratia_mvgam_enhancements),
34

drawDotmvgam
(gratia_mvgam_enhancements), 34

dynamic, 10, 98

dynamic(), 75

ensemble, 157
ensemble (ensemble.mvgam_forecast), 13
ensemble.mvgam_forecast, 13
ensemble.mvgam_forecast(), 24
eval_mvgam (evaluate_mvgams), 15
eval_smooth.hilbert.smooth
(gratia_mvgam_enhancements), 34
eval_smooth.mod. smooth
(gratia_mvgam_enhancements), 34
eval_smooth.moi.smooth
(gratia_mvgam_enhancements), 34
eval_smoothDothilbertDotsmooth
(gratia_mvgam_enhancements), 34
eval_smoothDotmodDotsmooth
(gratia_mvgam_enhancements), 34
eval_smoothDotmoiDotsmooth
(gratia_mvgam_enhancements), 34
evaluate_mvgams, 15

fevd, 163, 164, 168
fevd (fevd.mvgam), 19
fevd(), 44,95, 113
fevd.mvgam, 19

INDEX

find_predictors.mvgam
(mvgam_marginaleffects), 99
find_predictors.mvgam_prefit
(mvgam_marginaleffects), 99
fitted.mvgam, 6, 21
fitted.mvgam(), 6, 40, 76, 143
forecast, 17, 56, 96, 97
forecast.mvgam, 23, 60, 97, 131, 133, 135,
157,169
forecast.mvgam(), 13,40, 76, 142, 143, 156
formula, 65, 98
formula.gam, 98
formula.mvgam, 25

formula.mvgam_prefit (formula.mvgam), 25

gam, 27, 66, 70, 76, 98, 104, 126, 160, 173

gam.models, 76, 98

Gamma, 91

gamObject, 85

gaussian, 91

get_coef.mvgam (mvgam_marginaleffects),
99

get_data.mvgam (mvgam_marginaleffects),
99

get_data.mvgam_prefit
(mvgam_marginaleffects), 99

get_mvgam_priors, 26, 47, 48, 105

get_mvgam_priors(), 72, 74-76, 175

get_predict.mvgam
(mvgam_marginaleffects), 99

get_vcov.mvgam (mvgam_marginaleffects),
99

gegplot, 9,64, 113

ggplot2: :coord_sf(), 37, 38

ggplot2: :geom_contour(), 37

ggplot2::ggplot(), 38

ggplot2::guide_axis(), 37

glm, 98

GP, 32, 105

gp, 33,75, 98

gp.smooth, 71

gratia_mvgam_enhancements, 34, 111, 126

hindcast, 96

hindcast (hindcast.mvgam), 39
hindcast.mvgam, 22, 39, 97, 131, 133, 135
hindcast.mvgam(), 24, 76, 142, 143
how_to_cite (how_to_cite.mvgam), 40
how_to_cite(), 76

181

how_to_cite.mvgam, 40

Index (index-mvgam), 42
index-mvgam, 42
insight::find_predictors(), 102
insight::get_data(), 101, 102
irf, 98, 163, 164, 169

irf (irf.mvgam), 43

irf(), 20, 114

irf.mvgam, 43

jagam, 74, 76, 98, 166
jsdgam, 27, 29,41, 45, 48, 98, 175
jsdgam(), 41, 76, 104, 107, 108, 115, 150, 151

1fo_cv, 16, 17, 60

1fo_cv (1fo_cv.mvgam), 55

1fo_cv.mvgam, 55, 73, 175

1fo_cv.mvgam(), 76

log_posterior.mvgam
(mvgam_diagnostics), 86

loglLik.mvgam, 58

lognormal, 91

lognormal (mvgam_families), 90

loo.mvgam, 59

loo::100(), 59, 60

loo: :1loo_compare(), 60

loo_compare.mvgam (1loo.mvgam), 59

loo_compare.mvgam(), 76

lv_correlations, 28,62, 71, 175

lv_correlations(), 115, 151

marginaleffects: :get_coef (), 102
marginaleffects::get_predict(), 102
marginaleffects::get_vcov(), 102
marginaleffects::set_coef (), 102
mcmc_pairs, 109
mcmc_plot.mvgam, 63
mcmc_plot.mvgam(), 76
mgcv: :exclude.too.far(), 37
mgcv: :plot.gam(), 36
model. frame.mvgam, 64
model. frame.mvgam_prefit
(model. frame.mvgam), 64
monotonic, 65
mvgam, 29, 41,48, 58, 66, 68, 85, 86, 97-99,
105, 146, 158, 159, 161, 175
mvgam(), 4, 19, 23, 36, 39, 41-43, 49, 55, 62,
96,110,116, 117, 120-122, 125,

182

127, 128, 130, 132, 134, 136, 141,

150, 162,173
mvgam-class, 84
mvgam_diagnostics, 86
mvgam_draws, 64, 87
mvgam_families, 28, 46, 71, 74, 75, 90, 174
mvgam_fevd-class, 95
mvgam_forecast-class, 96
mvgam_formulae, 26, 29, 46, 70, 74, 97
mvgam_irf-class, 98
mvgam_marginaleffects, 99
mvgam_residcor-class, 103
mvgam_trends, 27, 70, 74, 75, 104, 161, 173
mvgam_use_cases, 73, 105

names (index-mvgam), 42

nb, 91

nb (mvgam_families), 90

neff_ratio (mvgam_diagnostics), 86
nmix (mvgam_families), 90
nuts_params (mvgam_diagnostics), 86

offset, 98
ordinate (ordinate. jsdgam), 107
ordinate. jsdgam, 107

pairs, 109
pairs.mvgam, 109
pairs.mvgam(), 76
par, 118, 136
patchwork: :plot_layout(), 37
plot.gam, 111, 125, 126
plot.mvgam, 110
plot.mvgam(), 76
plot.mvgam_conditional_effects
(conditional_effects.mvgam), 8
plot.mvgam_fevd, 113, 168
plot.mvgam_forecast, 14, 169
plot.mvgam_forecast
(plot_mvgam_forecasts), 117
plot.mvgam_forecast(), 24, 40
plot.mvgam_irf, 113, 169
plot.mvgam_irf (), 44
plot.mvgam_1fo, 114
plot.mvgam_residcor, 115
plot.mvgam_residcor(), 62
plot_mvgam_factors, 111,116
plot_mvgam_fc, 111, 131,133, 135

INDEX

plot_mvgam_fc (plot_mvgam_forecasts),
117

plot_mvgam_forecasts, 117

plot_mvgam_pterms, 120

plot_mvgam_randomeffects, 111, 121

plot_mvgam_resids, 1711, 121

plot_mvgam_series, 75, 123

plot_mvgam_smooth, 111, 124

plot_mvgam_trend, 7111, 126

plot_mvgam_uncertainty, 111, 128

plot_predictions, 9,76, 111

plot_slopes, 9,76, 111

poisson, 91

portal_data, 129

posterior_epred.mvgam, 22, 130, 133135,
148

posterior_linpred.mvgam, /31, 132, 135

posterior_predict.mvgam, /30, 131, 133,
134

pp_check (pp_check.mvgam), 138

pp_check.mvgam, 137, 138

pp_check.mvgam(), 76

PPC, 138, 139

ppc, 139

ppc (ppc.mvgam), 136

ppc.mvgam, 136

predict.gam, /142

Predict.matrix.mod.smooth (monotonic),
65

Predict.matrix.moi.smooth (monotonic),
65

predict.mvgam, 22, 137, 139, 141, 148

predict.mvgam(), 40, 76

prepare_predictions, 22

print.mvgam, 144

print.mvgam_conditional_effects
(conditional_effects.mvgam), 8

print.mvgam_summary, 145

prior,29,47,72,75,175

PW, 105, 145

residual_cor (residual_cor. jsdgam), 149

residual_cor(), 48, 49, 62, 103, 104, 108,
115

residual_cor. jsdgam, 149

residuals.mvgam, 6, 148

residuals.mvgam(), 6

rhat (mvgam_diagnostics), 86

roll_eval_mvgam (evaluate_mvgams), 15

INDEX 183

RW, 105, 152 tweedie (mvgam_families), 90
RWQ), 150
update. jsdgam (update.mvgam), 171

s, 75,98 update.mvgam, 16, 171
sampling, 73 update.mvgam(), 73
score, 17, 56
score (score.mvgam_forecast), 156 VAR, 99, 105, 164
score.mvgam_forecast, 14, 60, 156 VAR (RW), 152
score.mvgam_forecast(), 24, 76 VARQ), 19, 20, 43, 44, 96, 150
series_to_mvgam, 158 variables (index-mvgam), 42
set_coef.mvgam (mvgam_marginaleffects), vb, 73

99

sim_mvgam, 159 xts, 159

smooth.construct, 66

smooth.construct.mod. smooth. spec
(monotonic), 65

smooth.construct.moi.smooth.spec, 98

smooth.construct.moi.smooth. spec
(monotonic), 65

smooth.construct.re.smooth. spec, 74

stability (stability.mvgam), 162

stability(), 20, 44, 98

stability.mvgam, 162

stan, 86

stancode.mvgam (code), 7

stancode.mvgam_prefit (code), 7

standata.mvgam_prefit (code), 7

student, 9/

student (mvgam_families), 90

student_t (mvgam_families), 90

subset(), 101

summary.gam, 166

summary .mvgam, 165

summary .mvgam(), 76

summary .mvgam_fevd, 167

summary .mvgam_forecast, 168

summary .mvgam_forecast(), 24, 40

summary .mvgam_irf, 169

summary.mvgam_irf (), 44

summary.mvgam_prefit (summary.mvgam),
166

ZMVN, 105, 177
ZIMVNQ), 27,70, 173

t2, 98

te, 75, 98

terms, 65

their (index-mvgam), 42
ti, 75, 98
tidy.mvgam, 6, 170

ts, 159

	add_residuals.mvgam
	all_neon_tick_data
	augment.mvgam
	code
	conditional_effects.mvgam
	dynamic
	ensemble.mvgam_forecast
	evaluate_mvgams
	fevd.mvgam
	fitted.mvgam
	forecast.mvgam
	formula.mvgam
	get_mvgam_priors
	GP
	gratia_mvgam_enhancements
	hindcast.mvgam
	how_to_cite.mvgam
	index-mvgam
	irf.mvgam
	jsdgam
	lfo_cv.mvgam
	logLik.mvgam
	loo.mvgam
	lv_correlations
	mcmc_plot.mvgam
	model.frame.mvgam
	monotonic
	mvgam
	mvgam-class
	mvgam_diagnostics
	mvgam_draws
	mvgam_families
	mvgam_fevd-class
	mvgam_forecast-class
	mvgam_formulae
	mvgam_irf-class
	mvgam_marginaleffects
	mvgam_residcor-class
	mvgam_trends
	mvgam_use_cases
	ordinate.jsdgam
	pairs.mvgam
	plot.mvgam
	plot.mvgam_fevd
	plot.mvgam_irf
	plot.mvgam_lfo
	plot.mvgam_residcor
	plot_mvgam_factors
	plot_mvgam_forecasts
	plot_mvgam_pterms
	plot_mvgam_randomeffects
	plot_mvgam_resids
	plot_mvgam_series
	plot_mvgam_smooth
	plot_mvgam_trend
	plot_mvgam_uncertainty
	portal_data
	posterior_epred.mvgam
	posterior_linpred.mvgam
	posterior_predict.mvgam
	ppc.mvgam
	pp_check.mvgam
	predict.mvgam
	print.mvgam
	print.mvgam_summary
	PW
	residuals.mvgam
	residual_cor.jsdgam
	RW
	score.mvgam_forecast
	series_to_mvgam
	sim_mvgam
	stability.mvgam
	summary.mvgam
	summary.mvgam_fevd
	summary.mvgam_forecast
	summary.mvgam_irf
	tidy.mvgam
	update.mvgam
	ZMVN
	Index

