
Package ‘optweight’
September 9, 2025

Type Package

Title Optimization-Based Stable Balancing Weights

Version 1.0.0

Description Use optimization to estimate weights that balance covariates for binary, multi-
category, continuous, and multivariate treatments in the spirit of Zu-
bizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be speci-
fied for each covariate. In addition, sampling weights can be estimated that allow a sam-
ple to generalize to a population specified with given target moments of covariates.

Depends R (>= 4.1.0)

Imports osqp (>= 0.6.3.3), chk (>= 0.10.0), rlang (>= 1.1.6), Matrix
(>= 1.2-13), ggplot2 (>= 3.5.0), graphics, stats, utils

Suggests cobalt (>= 4.6.0), scs (>= 3.2.7), clarabel (>= 0.10.1),
highs (>= 1.10.0-3), lpSolve (>= 5.6.23), WeightIt, gbm,
marginaleffects, sandwich, fwb, knitr, rmarkdown, testthat (>=
3.0.0)

License GPL

Encoding UTF-8

URL https://ngreifer.github.io/optweight/,

https://github.com/ngreifer/optweight

BugReports https://github.com/ngreifer/optweight/issues

VignetteBuilder knitr

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Noah Greifer [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3067-7154>)

Maintainer Noah Greifer <noah.greifer@gmail.com>

Repository CRAN

Date/Publication 2025-09-09 06:50:11 UTC

1

https://doi.org/10.1080/01621459.2015.1023805
https://ngreifer.github.io/optweight/
https://github.com/ngreifer/optweight
https://github.com/ngreifer/optweight/issues
https://orcid.org/0000-0003-3067-7154


2 optweight

Contents
optweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
optweight.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
optweight.svy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
optweight.svy.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
plot.optweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
process_targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
process_tols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
summary.optweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Index 27

optweight Estimate Stable Balancing Weights

Description

Estimate stable balancing weights for treatments and covariates specified in formula. The degree
of balance for each covariate is specified by tols and the target population can be specified with
targets or estimand. See Zubizarreta (2015) and Wang & Zubizarreta (2019) for details of the
properties of the weights and the methods used to fit them.

Usage

optweight(
formula,
data = NULL,
tols = 0,
estimand = "ATE",
targets = NULL,
s.weights = NULL,
b.weights = NULL,
focal = NULL,
norm = "l2",
verbose = FALSE,
...

)

optweightMV(
formula.list,
data = NULL,
tols.list = list(0),
estimand = "ATE",
targets = NULL,
s.weights = NULL,
b.weights = NULL,
focal = NULL,



optweight 3

norm = "l2",
verbose = FALSE,
...

)

Arguments

formula A formula with a treatment variable on the left hand side and the covariates to
be balanced on the right hand side, or a list thereof. See glm() for more details.
Interactions and functions of covariates are allowed.

data An optional data set in the form of a data frame that contains the variables in
formula.

tols A vector of balance tolerance values for each covariate, or a list thereof. The
resulting weighted balance statistics will be at least as small as these values. If
only one value is supplied, it will be applied to all covariates. Can also be the
output of a call to process_tols(). See Details.

estimand The desired estimand, which determines the target population. For binary treat-
ments, can be "ATE", "ATT", "ATC", or NULL. For multi-category treatments,
can be "ATE", "ATT", or NULL. For continuous treatments, can be "ATE" or
NULL. The default for both is "ATE". For optweightMV(), only "ATE" or NULL
are supported. estimand is ignored when targets is non-NULL. If both estimand
and targets are NULL, no targeting will take place. See Details.

targets A vector of target population mean values for each baseline covariate. The re-
sulting weights will yield sample means within tols/2 units of the target val-
ues for each covariate. If NULL or all NA, estimand will be used to determine
targets. Otherwise, estimand is ignored. If any target values are NA, the corre-
sponding variable will not be targeted and its weighted mean will be wherever
the weights yield the smallest variance. Can also be the output of a call to
process_targets(). See Details.

s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights.

b.weights A vector of base weights or the name of a variable in data that contains base
weights. If supplied, the desired norm of the distance between the estimated
weights and the base weights is minimized.

focal When multi-category treatments are used and estimand = "ATT", which group
to consider the "treated" or focal group. This group will not be weighted, and
the other groups will be weighted to be more like the focal group. If specified,
estimand will automatically be set to "ATT".

norm character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "l1" for the L1 norm,
"l2" for the L2 norm (the default), "linf" for the L∞ norm, "entropy" for
the negative entropy, and "log" for the sum of the logs. See optweight.fit()
for details.

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

... Arguments passed on to optweight.fit, optweightMV.fit



4 optweight

std.binary,std.cont logical; whether the tolerances are in standardized
mean units (TRUE) or raw units (FALSE) for binary variables and continuous
variables, respectively. The default is FALSE for std.binary because raw
proportion differences make more sense than standardized mean difference
for binary variables. These arguments are analogous to the binary and
continuous arguments in bal.tab() in cobalt.

min.w numeric; a single value less than 1 for the smallest allowable weight.
Some analyses require nonzero weights for all units, so a small, nonzero
minimum may be desirable. The default is 1e-8 (10−8), which does not
materially change the properties of the weights from a minimum of 0 but
prevents warnings in some packages that use weights to estimate treatment
effects. When norm is "entropy" or "log" and min.w <= 0, min.w will be
set to the smallest nonzero value.

covs.list a list containing one numeric matrix of covariates to be balanced
for each treatment.

treat.list a list containing one vector of treatment statuses for each treat-
ment.

solver string; the name of the optimization solver to use. Allowable options
depend on norm. Default is to use whichever eligible solver is installed,
if any, or the default solver for the corresponding norm. See Details for
information.

formula.list A list of formulas, each with a treatment variable on the left hand side and the
covariates to be balanced on the right hand side.

tols.list A list of vectors of balance tolerance values for each covariate for each treat-
ment. The resulting weighted balance statistics will be at least as small as these
values. If only one value is supplied, it will be applied to all covariates. See
Details.

Details

The optimization is performed by the lower-level function optweight.fit() (for optweight())
or optweightMV.fit() (for optweightMV()).

For binary and multi-category treatments, weights are estimated so that the weighted mean differ-
ences of the covariates are within the given tolerance thresholds (unless std.binary or std.cont
are TRUE, in which case standardized mean differences are considered for binary and continuous
variables, respectively). For a covariate x with specified tolerance δ, the weighted means of each
each group will be within δ of each other. Additionally, when the ATE is specified as the estimand
or a target population is specified, the weighted means of each group will each be within δ/2 of the
target means; this ensures generalizability to the same population from which the original sample
was drawn.

If standardized tolerance values are requested, the standardization factor corresponds to the es-
timand requested: when the ATE is requested or a target population specified, the standardization
factor is the square root of the average variance for that covariate across treatment groups, and when
the ATT or ATC are requested, the standardization factor is the standard deviation of the covariate
in the focal group. The standardization factor is computed accounting for s.weights.

For continuous treatments, weights are estimated so that the weighted correlation between the treat-
ment and each covariate is within the specified tolerance threshold. If the ATE is requested or a



optweight 5

target population is specified, the means of the weighted covariates and treatment are restricted to
be equal to those of the target population to ensure generalizability to the desired target population.
The weighted correlation is computed as the weighted covariance divided by the product of the un-
weighted standard deviations. The means used to center the variables in computing the covariance
are those specified in the target population.

Dual Variables:
Two types of constraints may be associated with each covariate: target constraints and balance
constraints. Target constraints require the mean of the covariate to be at (or near) a specific target
value in each treatment group (or for the whole group when treatment is continuous). Balance
constraints require the means of the covariate in pairs of treatments to be near each other. For
binary and multi-category treatments, balance constraints are redundant if target constraints are
provided for a variable. For continuous variables, balance constraints refer to the correlation
between treatment and the covariate and are not redundant with target constraints. In the duals
component of the output, each covariate has a dual variable for each nonredundant constraint
placed on it.
The dual variable for each constraint is the instantaneous rate of change of the objective function
at the optimum corresponding to a change in the constraint. Because this relationship is not linear,
large changes in the constraint will not exactly map onto corresponding changes in the objective
function at the optimum, but will be close for small changes in the constraint. For example, for a
covariate with a balance constraint of .01 and a corresponding dual variable of 40, increasing (i.e.,
relaxing) the constraint to .025 will decrease the value of the objective function at the optimum
by approximately (.025− .01) ∗ 40 = .6.
For factor variables, optweight() takes the sum of the absolute dual variables for the constraints
for all levels and reports it as the the single dual variable for the variable itself. This summed dual
variable works the same way as dual variables for continuous variables do.

Value

For optweight(), an optweight object with the following elements:

weights The estimated weights, one for each unit.

treat The values of the treatment variable.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

s.weights The provided sampling weights.

b.weights The provided base weights.

estimand The estimand requested.

focal The focal variable if the ATT was requested with a multi-category treatment.

call The function call.

tols The tolerance values for each covariate.

duals A data.frame containing the dual variables for each covariate. See Details for
interpretation of these values.

info Information about the performance of the optimization at termination.

For optweightMV(), an optweightMV object with the following elements:



6 optweight

weights The estimated weights, one for each unit.

treat.list A list of the values of the treatment variables.

covs.list A list of the covariates for each treatment used in the fitting. Only includes the
raw covariates, which may have been altered in the fitting process.

s.weights The provided sampling weights.

b.weights The provided base weights.

call The function call.

tols A list of tolerance values for each covariate for each treatment.

duals A list of data.frames containing the dual variables for each covariate for each
treatment. See Details for interpretation of these values.

info Information about the performance of the optimization at termination.

References

Chattopadhyay, A., Cohn, E. R., & Zubizarreta, J. R. (2024). One-Step Weighting to Generalize
and Transport Treatment Effect Estimates to a Target Population. The American Statistician, 78(3),
280–289. doi:10.1080/00031305.2023.2267598

Källberg, D., & Waernbaum, I. (2023). Large Sample Properties of Entropy Balancing Estimators
of Average Causal Effects. Econometrics and Statistics. doi:10.1016/j.ecosta.2023.11.004

Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93–105. doi:10.1093/
biomet/asz050

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

See Also

optweight.fit(), the lower-level function that performs the fitting. Links on that page can help
with diagnosing and fixing more subtle issues with the optimization.

sbw, which was the inspiration for this package and provides some additional functionality for
binary treatments.

WeightIt, which provides a simplified interface to optweight() and a more efficient implementa-
tion of entropy balancing.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

# Balancing covariates between treatment groups (binary)
(ow1 <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = c(.01, .02, .03, .04, .05),
estimand = "ATE"))

bal.tab(ow1)

https://doi.org/10.1080/00031305.2023.2267598
https://doi.org/10.1016/j.ecosta.2023.11.004
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805
https://CRAN.R-project.org/package=sbw
https://CRAN.R-project.org/package=WeightIt


optweight 7

# Exactly alancing covariates with respect to race (multi-category)
(ow2 <- optweight(race ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = 0, estimand = "ATT",
focal = "black"))

bal.tab(ow2)

# Balancing covariates between treatment groups (binary)
# and requesting a specified target population
targets <- process_targets(~ age + educ + married +

nodegree + re74,
data = lalonde,
targets = c(26, 12, .4, .5,

1000))

(ow3a <- optweight(treat ~ age + educ + married +
nodegree + re74, data = lalonde,

targets = targets,
estimand = NULL))

bal.tab(ow3a, disp.means = TRUE)

# Balancing covariates between treatment groups (binary)
# and not requesting a target population
(ow3b <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
targets = NULL,
estimand = NULL))

bal.tab(ow3b, disp.means = TRUE)

# Balancing two treatments
(ow4 <- optweightMV(list(treat ~ age + educ + race + re74,

re75 ~ age + educ + race + re74),
data = lalonde))

summary(ow4)

bal.tab(ow4)

# Using a different norm
(ow1b <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = c(.01, .02, .03, .04, .05),
estimand = "ATE",
norm = "l1"))

summary(ow1b, weight.range = FALSE)
summary(ow1, weight.range = FALSE)

# Allowing for negative weights
ow5 <- optweight(treat ~ age + educ + married + race +



8 optweight.fit

nodegree + re74 + re75,
data = lalonde,
estimand = "ATE",
min.w = -Inf)

summary(ow5)

optweight.fit Fitting Function for Stable Balancing Weights

Description

optweight.fit() and optweightMV.fit() perform the optimization for optweight() and optweightMV()
and should, in most cases, not be used directly. Little processing of inputs is performed, so they
must be given exactly as described below.

Usage

optweight.fit(
covs,
treat,
tols = 0,
estimand = "ATE",
targets = NULL,
s.weights = NULL,
b.weights = NULL,
focal = NULL,
norm = "l2",
std.binary = FALSE,
std.cont = TRUE,
min.w = 1e-08,
verbose = FALSE,
solver = NULL,
...

)

optweightMV.fit(
covs.list,
treat.list,
tols.list = list(0),
estimand = "ATE",
targets = NULL,
s.weights = NULL,
b.weights = NULL,
norm = "l2",
std.binary = FALSE,



optweight.fit 9

std.cont = TRUE,
min.w = 1e-08,
verbose = FALSE,
solver = NULL,
...

)

Arguments

covs a numeric matrix of covariates to be balanced.
treat a vector of treatment statuses. Non-numeric (i.e., factor or character) vectors are

allowed.
tols a vector of balance tolerance values for each covariate. Default is 0.
estimand the desired estimand, which determines the target population. For binary treat-

ments, can be "ATE", "ATT", "ATC", or NULL. For multi-category treatments,
can be "ATE", "ATT", or NULL. For continuous treatments, can be "ATE" or
NULL. The default for both is "ATE". For optweightMV.fit(), only "ATE" or
NULL are supported. estimand is ignored when targets is non-NULL. If both
estimand and targets are NULL, no targeting will take place.

targets an optional vector of target population mean values for each baseline covariate.
The resulting weights will yield sample means within tols/2 units of the target
values for each covariate. If NULL or all NA, estimand will be used to determine
targets. Otherwise, estimand is ignored. If any target values are NA, the corre-
sponding variable will not be targeted and its weighted mean will be wherever
the weights yield the smallest variance.

s.weights an optional vector of sampling weights. Default is a vector of 1s.
b.weights an optional vector of base weights. Default is a vector of 1s.
focal when multi-categorical treatments are used and the estimand = "ATT", which

group to consider the "treated" or focal group. This group will not be weighted,
and the other groups will be weighted to resemble the focal group.

norm character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "l1" for the L1 norm,
"l2" for the L2 norm (the default), "linf" for the L∞ norm, "entropy" for
the negative entropy, and "log" for the sum of the negative logs. See Details.

std.binary, std.cont
logical; whether the tolerances are in standardized mean units (TRUE) or raw
units (FALSE) for binary variables and continuous variables, respectively. The
default is FALSE for std.binary because raw proportion differences make more
sense than standardized mean difference for binary variables. These arguments
are analogous to the binary and continuous arguments in bal.tab() in cobalt.

min.w numeric; a single value less than 1 for the smallest allowable weight. Some
analyses require nonzero weights for all units, so a small, nonzero minimum
may be desirable. The default is 1e-8 (10−8), which does not materially change
the properties of the weights from a minimum of 0 but prevents warnings in
some packages that use weights to estimate treatment effects. When norm is
"entropy" or "log" and min.w <= 0, min.w will be set to the smallest nonzero
value.



10 optweight.fit

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

solver string; the name of the optimization solver to use. Allowable options depend
on norm. Default is to use whichever eligible solver is installed, if any, or the
default solver for the corresponding norm. See Details for information.

... Options that are passed to the settings function corresponding to solver.

covs.list a list containing one numeric matrix of covariates to be balanced for each treat-
ment.

treat.list a list containing one vector of treatment statuses for each treatment.

tols.list a list of balance tolerance vectors, one for each treatment, each with a value for
each covariate.

Details

optweight.fit() and optweightMV.fit() transform the inputs into the required inputs for the
optimization functions, which are (sparse) matrices and vectors, and then supplies the outputs (the
weights, dual variables, and convergence information) back to optweight() or optweightMV().
Little processing of inputs is performed, as this is normally handled by optweight() or optweightMV().

Target and balance constraints are applied to the product of the estimated weights and the sampling
weights. In addition,the sum of the product of the estimated weights and the sampling weights is
constrained to be equal to the sum of the product of the base weights and sampling weights. For
binary and multi-category treatments, these constraints apply within each treatment group.

norm:
The objective function for the optimization problem is f (wi, bi, si), where wi is the estimated
weight for unit i, si is the sampling weight for unit i (supplied by s.weights) and bi is the base
weight for unit i (supplied by b.weights). The norm argument determines f(., ., .), as detailed
below:

• when norm = "l2", f (wi, bi, si) =
1
n

∑
i si(wi − bi)

2

• when norm = "l1", f (wi, bi, si) =
1
n

∑
i si|wi − bi|

• when norm = "linf", f (wi, bi, si) = maxi |wi − bi|
• when norm = "entropy", f (wi, bi, si) =

1
n

∑
i siwi log

wi

bi

• when norm = "log", f (wi, bi, si) =
1
n

∑
i −si log

wi

bi

By default, s.weights and b.weights are set to 1 for all units unless supplied. b.weights
must be positive when norm is "entropy" or "log", and norm = "linf" cannot be used when
s.weights are supplied.
When norm = "l2" and both s.weights and b.weights are NULL, weights are estimated to max-
imize the effective sample size. When norm = "entropy", the estimated weights are equivalent to
entropy balancing weights (Källberg & Waernbaum, 2023). When norm = "log", b.weights are
ignored in the optimization, as they do not affect the estimated weights.

solver:
The solver argument controls which optimization solver is used. Different solvers are compatible
with each norm. See the table below for allowable options, which package they require, which
function does the solving, and which function controls the settings.



optweight.fit 11

solver norm Package Solver function Settings function
"osqp" "l2", "l1", "linf" osqp osqp::solve_osqp() osqp::osqpSettings()
"highs" "l2", "l1", "linf" highs highs::highs_solve() highs::highs_control() / highs::highs_available_solver_options()
"lpsolve" "l1", "linf" lpSolve lpSolve::lp() .
"scs" "entropy", "log" scs scs::scs() scs::scs_control()
"clarabel" "entropy", "log" clarabel clarabel::clarabel() clarabel::clarabel_control()

Note that "lpsolve" can only be used when min.w is nonnegative.
The default solver for each norm is as follows:

norm Default solver
"l2" "osqp"
"l1" "highs"
"linf" "highs"
"entropy" "scs"
"log" "scs"

If the package corresponding to a default solver is not installed but the package for a different
eligible solver is, that will be used. Otherwise, you will be asked to install the required package.
osqp is required for optweight, and so will be the default for the "l1" and "linf" norms if highs
is not installed. The default package is the one has shown good performance for the given norm;
generally, all eligible solvers perform about equally well in terms of accuracy but differ in time
taken.

Solving Convergence Failure:
Sometimes the optimization will fail to converge at a solution. There are a variety of reasons why
this might happen, which include that the constraints are nearly impossible to satisfy or that the
optimization surface is relatively flat. It can be hard to know the exact cause or how to solve
it, but this section offers some solutions one might try. Typically, solutions can be found most
easily when using the "l2" norm; other norms, especially "linf" and "l1", are more likely to
see problems.
Rarely is the problem too few iterations, though this is possible. Most problems can be solved
in the default 200,000 iterations, but sometimes it can help to increase this number with the
max_iter argument. Usually, though, this just ends up taking more time without a solution found.
If the problem is that the constraints are too tight, it can be helpful to loosen the constraints.
Sometimes examining the dual variables of a solution that has failed to converge can reveal which
constraints are causing the problem.
Sometimes a suboptimal solution is possible; such a solution does not satisfy the constraints
exactly but will come pretty close. To allow these solutions, the argument eps can be increased to
larger values.
Sometimes using a different solver can improve performance. Using the default solver for each
norm, as described above, can reduce the probability of convergence failures.

Value

An optweight.fit or optweightMV.fit object with the following elements:

https://CRAN.R-project.org/package=osqp
https://CRAN.R-project.org/package=highs
https://CRAN.R-project.org/package=lpSolve
https://CRAN.R-project.org/package=scs
https://CRAN.R-project.org/package=clarabel


12 optweight.svy

w The estimated weights, one for each unit.

duals A data.frame containing the dual variables for each covariate (for optweight.fit()),
or a list thereof (for optweightMV.fit()). See vignette("optweight") for
interpretation of these values.

info A list containing information about the performance of the optimization at ter-
mination.

References

Chattopadhyay, A., Cohn, E. R., & Zubizarreta, J. R. (2024). One-Step Weighting to Generalize
and Transport Treatment Effect Estimates to a Target Population. The American Statistician, 78(3),
280–289. doi:10.1080/00031305.2023.2267598

Källberg, D., & Waernbaum, I. (2023). Large Sample Properties of Entropy Balancing Estimators
of Average Causal Effects. Econometrics and Statistics. doi:10.1016/j.ecosta.2023.11.004

Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93–105. doi:10.1093/
biomet/asz050

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

See Also

optweight() and optweightMV() which you should use for estimating the balancing weights,
unless you know better.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

treat <- lalonde$treat
covs <- splitfactor(lalonde[2:8], drop.first = "if2")

ow.fit <- optweight.fit(covs,
treat,
tols = .02,
estimand = "ATE",
norm = "l2")

optweight.svy Estimate Targeting Weights Using Optimization

https://doi.org/10.1080/00031305.2023.2267598
https://doi.org/10.1016/j.ecosta.2023.11.004
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805


optweight.svy 13

Description

Estimate targeting weights for covariates specified in formula. The target means are specified with
targets and the maximum distance between each weighted covariate mean and the corresponding
target mean is specified by tols. See Zubizarreta (2015) for details of the properties of the weights
and the methods used to fit them.

Usage

optweight.svy(
formula,
data = NULL,
tols = 0,
targets = NULL,
s.weights = NULL,
b.weights = NULL,
norm = "l2",
verbose = FALSE,
...

)

Arguments

formula a formula with nothing on the left hand side and the covariates to be targeted on
the right hand side. See glm() for more details. Interactions and functions of
covariates are allowed.

data An optional data set in the form of a data frame that contains the variables in
formula.

tols a vector of target balance tolerance values for each covariate. The resulting
weighted covariate means will be no further away from the targets than the spec-
ified values. If only one value is supplied, it will be applied to all covariates. Can
also be the output of a call to process_tols().

targets A vector of target population mean values for each baseline covariate. The re-
sulting weights will yield sample means within tols/2 units of the target val-
ues for each covariate. If NULL or all NA, estimand will be used to determine
targets. Otherwise, estimand is ignored. If any target values are NA, the corre-
sponding variable will not be targeted and its weighted mean will be wherever
the weights yield the smallest variance. Can also be the output of a call to
process_targets(). See Details.

s.weights A vector of sampling weights or the name of a variable in data that contains
sampling weights.

b.weights A vector of base weights or the name of a variable in data that contains base
weights. If supplied, the desired norm of the distance between the estimated
weights and the base weights is minimized.

norm character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "l1" for the L1 norm,
"l2" for the L2 norm (the default), "linf" for the L∞ norm, "entropy" for



14 optweight.svy

the negative entropy, and "log" for the sum of the logs. See optweight.fit()
for details.

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

... Arguments passed on to optweight.svy.fit

std.binary,std.cont logical; whether the tolerances are in standardized
mean units (TRUE) or raw units (FALSE) for binary variables and continuous
variables, respectively. The default is FALSE for std.binary because raw
proportion differences make more sense than standardized mean difference
for binary variables. These arguments are analogous to the binary and
continuous arguments in bal.tab() in cobalt.

min.w numeric; a single value less than 1 for the smallest allowable weight.
Some analyses require nonzero weights for all units, so a small, nonzero
minimum may be desirable. The default is 1e-8 (10−8), which does not
materially change the properties of the weights from a minimum of 0 but
prevents warnings in some packages that use weights to estimate treatment
effects. When norm is "entropy" or "log" and min.w <= 0, min.w will be
set to the smallest nonzero value.

Details

The optimization is performed by the lower-level function optweight.svy.fit().

Weights are estimated so that the standardized differences between the weighted covariate means
and the corresponding targets are within the given tolerance thresholds (unless std.binary or
std.cont are FALSE, in which case unstandardized mean differences are considered for binary and
continuous variables, respectively). For a covariate x with specified tolerance δ, the weighted mean
will be within δ of the target. If standardized tolerance values are requested, the standardization
factor is the standard deviation of the covariate in the whole sample. The standardization factor is
always unweighted.

See the optweight() help page for information on interpreting dual variables and solving conver-
gence failure.

Value

An optweight.svy object with the following elements:

weights The estimated weights, one for each unit.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

s.weights The provided sampling weights.

call The function call.

tols The tolerance values for each covariate.

duals A data.frame containing the dual variables for each covariate. See optweight()
for interpretation of these values.

info Information about the performance of the optimization at termination.



optweight.svy.fit 15

References

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

See Also

optweight.svy.fit(), the lower-level function that performs the fitting.

optweight.fit() for more details about the optimization options.

optweight() for estimating weights that balance treatment groups.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

cov.formula <- ~ age + educ + race + married + nodegree

targets <- process_targets(cov.formula, data = lalonde,
targets = c(23, 9, .3, .3, .4,

.2, .5))

ows <- optweight.svy(cov.formula,
data = lalonde,
tols = 0,
targets = targets)

ows

#Unweighted means
col_w_mean(ows$covs)

#Weighted means; same as targets
col_w_mean(ows$covs, w = ows$weights)

optweight.svy.fit Fitting Function for Optweight for Survey Weights

Description

optweight.svy.fit() performs the optimization for optweight.svy() and should, in most cases,
not be used directly. Little processing of inputs is performed, so they must be given exactly as
described below.

https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805


16 optweight.svy.fit

Usage

optweight.svy.fit(
covs,
targets,
tols = 0,
s.weights = NULL,
b.weights = NULL,
norm = "l2",
std.binary = FALSE,
std.cont = TRUE,
min.w = 1e-08,
verbose = FALSE,
solver = NULL,
...

)

Arguments

covs a numeric matrix of covariates to be targeted.
targets a vector of target population mean values for each covariate. The resulting

weights will yield sample means within tols units of the target values for each
covariate. If any target values are NA, the corresponding variable will not be
targeted and its weighted mean will be wherever the weights yield the smallest
variance. To ensure the weighted mean for a covariate is equal to its unweighted
mean (i.e., so that its original mean is its target mean), its original mean must be
supplied as a target.

tols a vector of target balance tolerance values. Default is 0.
s.weights an optional vector of sampling weights. Default is a vector of 1s.
b.weights an optional vector of base weights. Default is a vector of 1s.
norm character; a string containing the name of the norm corresponding to the ob-

jective function to minimize. Allowable options include "l1" for the L1 norm,
"l2" for the L2 norm (the default), "linf" for the L∞ norm, "entropy" for
the negative entropy, and "log" for the sum of the negative logs. See Details at
optweight.fit() for more information.

std.binary, std.cont
logical; whether the tolerances are in standardized mean units (TRUE) or raw
units (FALSE) for binary variables and continuous variables, respectively. The
default is FALSE for std.binary because raw proportion differences make more
sense than standardized mean difference for binary variables. These arguments
are analogous to the binary and continuous arguments in bal.tab() in cobalt.

min.w numeric; a single value less than 1 for the smallest allowable weight. Some
analyses require nonzero weights for all units, so a small, nonzero minimum
may be desirable. The default is 1e-8 (10−8), which does not materially change
the properties of the weights from a minimum of 0 but prevents warnings in
some packages that use weights to estimate treatment effects. When norm is
"entropy" or "log" and min.w <= 0, min.w will be set to the smallest nonzero
value.



optweight.svy.fit 17

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

solver string; the name of the optimization solver to use. Allowable options depend
on norm. Default is to use whichever eligible solver is installed, if any, or the
default solver for the corresponding norm. See Details at optweight.fit() for
information.

... Options that are passed to the settings function corresponding to solver.

Details

optweight.svy.fit() transforms the inputs into the required inputs for the optimization functions,
which are (sparse) matrices and vectors, and then supplies the outputs (the weights, dual variables,
and convergence information) back to optweight.svy(). Little processing of inputs is performed,
as this is normally handled by optweight.svy().

Target constraints are applied to the product of the estimated weights and the sampling weights. In
addition, sum of the product of the estimated weights and the sampling weights is constrained to be
equal to the sum of the product of the base weights and sampling weights.

Value

An optweight.svy.fit object with the following elements:

w The estimated weights, one for each unit.

duals A data.frame containing the dual variables for each covariate. See Zubizarreta
(2015) for interpretation of these values.

info A list containing information about the performance of the optimization at ter-
mination.

References

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

See Also

optweight.svy() which you should use for estimating the balancing weights, unless you know
better.

optweight.fit() for more details about the allowed norms and optimization.

Examples

library("cobalt")
data("lalonde", package = "cobalt")

covs <- splitfactor(lalonde[c("age", "educ", "race",
"married", "nodegree")],

drop.first = FALSE)

https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805


18 plot.optweight

targets <- c(23, 9, .3, .3, .4, .2, .5)

ows.fit <- optweight.svy.fit(covs,
targets = targets,
norm = "l2")

#Unweighted means
col_w_mean(covs)

#Weighted means; same as targets
col_w_mean(covs, w = ows.fit$w)

plot.optweight Plot Dual Variables for Assessing Balance Constraints

Description

Plots the dual variables resulting from optweight() in a way similar to figure 2 of Zubizarreta
(2015), which explained how to interpret these values. These represent the cost of changing the
constraint on the variance of the resulting weights. For covariates with large values of the dual
variable, tightening the constraint will increase the variability of the weights, and loosening the
constraint will decrease the variability of the weights, both to a greater extent than would doing the
same for covariate with small values of the dual variable.

Usage

## S3 method for class 'optweight'
plot(x, ...)

## S3 method for class 'optweightMV'
plot(x, which.treat = 1, ...)

## S3 method for class 'optweight.svy'
plot(x, ...)

Arguments

x an optweight, optweightMV, or optweight.svy object; the output of a call to
optweight(), optweightMV(), or optweight.svy().

... Ignored.

which.treat For optweightMV objects, which treatment to display. Only one may be dis-
played at a time.

Value

A ggplot object that can be used with other ggplot2 functions.



plot.optweight 19

References

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910–922. doi:10.1080/
01621459.2015.1023805

See Also

optweight(), optweightMV(), or optweight.svy() to estimate the weights and the dual variables

plot.summary.optweight() for plots of the distribution of weights

Examples

library("cobalt")
data("lalonde", package = "cobalt")

tols <- process_tols(treat ~ age + educ + married +
nodegree + re74, data = lalonde,

tols = .1)

#Balancing covariates between treatment groups (binary)
ow1 <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

summary(ow1) # Note the RMSE Dev and effective
# sample size (ESS)

plot(ow1) # age has a low value, married is high

tols["age"] <- 0
ow2 <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

summary(ow2) # Notice that tightening the constraint
# on age had a negligible effect on the
# variability of the weights and ESS

tols["age"] <- .1
tols["married"] <- 0
ow3 <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

summary(ow3) # In contrast, tightening the constraint
# on married had a large effect on the
# variability of the weights, shrinking
# the ESS

https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805


20 process_targets

process_targets Construct and Check Targets Input

Description

Checks whether proposed target population means values for targets are suitable in number and
order for submission to optweight() and optweight.svy(). Users should include one value per
variable in formula. For factor variables, one value per level of the variable is required. The
output of process_targets() can also be used as an input to targets in optweight() and
optweight.svy().

Usage

process_targets(formula, data = NULL, targets = NULL, s.weights = NULL)

check.targets(...)

## S3 method for class 'optweight.targets'
print(x, digits = 5, ...)

Arguments

formula a formula with the covariates to be targeted on the right-hand side. See glm()
for more details. Interactions and functions of covariates are allowed. Can be
omitted, in which case all variables in data are assumed targeted.

data an optional data set in the form of a data frame that contains the variables in
formula.

targets a vector of target population mean values for each covariate. These should be in
the order corresponding to the order of the corresponding variable in formula,
except for interactions, which will appear after all lower-order terms. For factor
variables, a target value must be specified for each level of the factor, and these
values must add up to 1. If NULL, the current sample means will be produced
(weighted by s.weights). If NA, an NA vector named with the covariate names
will be produced.

s.weights an optional vector of sampling weights. Default is a vector of 1s.

... ignored.

x an optweight.targets object; the output of a call to process_targets().

digits how many digits to print.



process_targets 21

Details

The purpose of process_targets() is to allow users to ensure that their proposed input to targets
in optweight() and optweight.svy() is correct both in the number of entries and their order. This
is especially important when factor variables and interactions are included in the formula because
factor variables are split into several dummies and interactions are moved to the end of the variable
list, both of which can cause some confusion and potential error when entering targets values.

Factor variables are internally split into a dummy variable for each level, so the user must specify a
target population mean value for each level of the factor. These must add up to 1, and an error will
be displayed if they do not. These values represent the proportion of units in the target population
with each factor level.

Interactions (e.g., a:b or a*b in the formula input) are always sent to the end of the variable list
even if they are specified elsewhere in the formula. It is important to run process_targets() to
ensure the order of the proposed targets corresponds to the represented order of covariates used in
the formula. You can run process_targets(., targets = NA) to see the order of covariates that
is required without specifying any targets.

Value

An optweight.targets object, which is a named vector of target population mean values, one for
each (expanded) covariate specified in formula. This should be used as user inputs to optweight()
and optweight.svy().

See Also

process_tols()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

# Generating targets; means by default
targets <- process_targets(~ age + race + married +

nodegree + re74,
data = lalonde)

# Notice race is split into three values
targets

# Generating targets; NA by default
targets <- process_targets(~ age + race + married +

nodegree + re74,
data = lalonde,
targets = NA)

targets

# Can also supply just a dataset
covs <- lalonde |>

subset(select = c(age, race, married,
nodegree, re74))



22 process_tols

targets <- process_targets(covs)

targets

process_tols Construct and Check Tolerance Input

Description

Checks whether proposed tolerance values for tols are suitable in number and order for submission
to optweight(). Users should include one value per item in formula. The output can also be used
as an input to tols in optweight().

Usage

process_tols(formula, data = NULL, tols = 0)

check.tols(...)

## S3 method for class 'optweight.tols'
print(x, internal = FALSE, digits = 5, ...)

Arguments

formula a formula with the covariates to be balanced on the right-hand side. See glm()
for more details. Interactions and functions of covariates are allowed. Lists of
formulas are not allowed; multiple formulas must be checked one at a time.

data an optional data set in the form of a data frame that contains the variables in
formula.

tols a vector of balance tolerance values in standardized mean difference units for
each covariate. These should be in the order corresponding to the order of the
corresponding variable in formula, except for interactions, which will appear
after all lower-order terms. If only one value is supplied, it will be applied to all
covariates.

... ignored.

x an optweight.tols object; the output of a call to process_tols().

internal logical; whether to print the tolerance values that are to be used internally by
optweight(). See Value section.

digits how many digits to print.



process_tols 23

Details

The purpose of process_tols() is to allow users to ensure that their proposed input to tols in
optweight() is correct both in the number of entries and their order. This is especially important
when factor variables and interactions are included in the formula because factor variables are split
into several dummies and interactions are moved to the end of the variable list, both of which can
cause some confusion and potential error when entering tols values.

Factor variables are internally split into a dummy variable for each level, but the user only needs to
specify one tolerance value per original variable; process_tols() automatically expands the tols
input to match the newly created variables.

Interactions (e.g., a:b or a*b in the formula input) are always sent to the end of the variable list
even if they are specified elsewhere in the formula. It is important to run process_tols() to
ensure the order of the proposed tols corresponds to the represented order of covariates used in
optweight(). You can run process_tols() with no tols input to see the order of covariates that
is required.

process_tols() was designed to be used primarily for its message printing and print() method,
but you can also assign its output to an object for use as an input to tols in optweight().

Note that only one formula and vector of tolerance values can be assessed at a time; for multiple
treatments, each formula and tolerance vector must be entered separately.

Value

An optweight.tols object, which is a named vector of tolerance values, one for each variable
specified in formula. This should be used as user inputs to optweight(). The "internal.tols"
attribute contains the tolerance values to be used internally by optweight(). These will differ from
the vector values when there are factor variables that are split up; the user only needs to submit
one tolerance per factor variable, but separate tolerance values are produced for each new dummy
created.

See Also

process_targets()

Examples

library("cobalt")
data("lalonde", package = "cobalt")

# Generating tols; 0 by default
tols <- process_tols(treat ~ age + educ + married +

nodegree + re74,
data = lalonde)

tols

tols <- process_tols(treat ~ age + educ + married +
nodegree + re74,

data = lalonde,
tols = .05)



24 summary.optweight

tols

# Checking the order of interactions; notice they go
# at the end even if specified at the beginning.
tols <- process_tols(treat ~ age:educ + married*race +

nodegree + re74,
data = lalonde,
tols = .05)

tols

# Internal tolerances for expanded covariates
print(tols, internal = TRUE)

summary.optweight Summarize, print, and plot information about estimated weights

Description

These functions summarize the weights resulting from a call to optweight() or optweight.svy().
summary() produces summary statistics on the distribution of weights, including their range and
variability, and the effective sample size of the weighted sample (computing using the formula in
McCaffrey, Rudgeway, & Morral, 2004). plot() creates a histogram of the weights.

Usage

## S3 method for class 'optweight'
summary(object, top = 5, ignore.s.weights = FALSE, weight.range = TRUE, ...)

## S3 method for class 'optweightMV'
summary(object, top = 5, ignore.s.weights = FALSE, weight.range = TRUE, ...)

## S3 method for class 'optweight.svy'
summary(object, top = 5, ignore.s.weights = FALSE, weight.range = TRUE, ...)

## S3 method for class 'summary.optweight'
plot(x, ...)

Arguments

object An optweight, optweightMV, or optweight.svy object; the output of a call to
optweight() or optweight.svy().

top How many of the largest and smallest weights to display. Default is 5.
ignore.s.weights

Whether or not to ignore sampling weights when computing the weight sum-
mary. If FALSE, the default, the estimated weights will be multiplied by the
sampling weights (if any) before values are computed.



summary.optweight 25

weight.range logical; whether display statistics about the range of weights and the highest
and lowest weights for each group. Default is TRUE.

... Additional arguments. For plot(), additional arguments passed to graphics::hist()
to determine the number of bins, though ggplot2::geom_histogram() from
ggplot2 is actually used to create the plot.

x A summary.optweight, summary.optweightMV, or summary.optweight.svy
object; the output of a call to summary.optweight(), summary.optweightMV(),
or ()summary.optweight.svy.

Value

For point treatments (i.e., optweight objects), summary() returns a summary.optweight object
with the following elements:

weight.range The range (minimum and maximum) weight for each treatment group.
weight.top The units with the greatest weights in each treatment group; how many are in-

cluded is determined by top.
l2 The square root of the L2 norm of the estimated weights from the base weights,

weighted by the sampling weights (if any):
√

1
n

∑
i si(wi − bi)2

l1 The L1 norm of the estimated weights from the base weights, weighted by the
sampling weights (if any): 1

n

∑
i si|wi − bi|

linf The L∞ norm (maximum absolute deviation) of the estimated weights from the
base weights: maxi |wi − bi|

rel.ent The relative entropy between the estimated weights and the base weights (en-
tropy norm), weighted by the sampling weights (if any): 1

n

∑
i siwi log

(
wi

bi

)
.

Only computed if all weights are positive.
num.zeros The number of units with a weight equal to 0.
effective.sample.size

The effective sample size for each treatment group before and after weighting.

For multivariate treatments (i.e., optweightMV objects), a list of the above elements for each treat-
ment.

For optweight.svy objects, a list of the above elements but with no treatment group divisions.

plot() returns a ggplot object with a histogram displaying the distribution of the estimated weights.
If the estimand is the ATT or ATC, only the weights for the non-focal group(s) will be displayed
(since the weights for the focal group are all 1). A dotted line is displayed at the mean of the weights
(the mean of the base weights, or 1 if not supplied).

References

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403–425. doi:10.1037/1082989X.9.4.403

See Also

plot.optweight() for plotting the values of the dual variables.

https://doi.org/10.1037/1082-989X.9.4.403


26 summary.optweight

Examples

library("cobalt")
data("lalonde", package = "cobalt")

#Balancing covariates between treatment groups (binary)
(ow1 <- optweight(treat ~ age + educ + married +

nodegree + re74, data = lalonde,
tols = .001,
estimand = "ATT"))

(s <- summary(ow1))

plot(s, breaks = 12)



Index

check.targets (process_targets), 20
check.tols (process_tols), 22
clarabel::clarabel(), 11
clarabel::clarabel_control(), 11

ggplot2::geom_histogram(), 25
glm(), 3, 13, 20, 22
graphics::hist(), 25

highs::highs_available_solver_options(),
11

highs::highs_control(), 11
highs::highs_solve(), 11

lpSolve::lp(), 11

optweight, 2
optweight(), 8, 10, 12, 14, 15, 18–24
optweight.fit, 3, 8
optweight.fit(), 3, 4, 6, 14–17
optweight.svy, 12
optweight.svy(), 15, 17–21, 24
optweight.svy.fit, 14, 15
optweight.svy.fit(), 14, 15
optweightMV (optweight), 2
optweightMV(), 8, 10, 12, 18, 19
optweightMV.fit, 3
optweightMV.fit (optweight.fit), 8
optweightMV.fit(), 4
osqp::osqpSettings(), 11
osqp::solve_osqp(), 11

plot.optweight, 18
plot.optweight(), 25
plot.optweightMV (plot.optweight), 18
plot.summary.optweight

(summary.optweight), 24
plot.summary.optweight(), 19
print.optweight.targets

(process_targets), 20
print.optweight.tols (process_tols), 22

process_targets, 20
process_targets(), 3, 13, 23
process_tols, 22
process_tols(), 3, 13, 21

scs::scs(), 11
scs::scs_control(), 11
summary.optweight, 24
summary.optweightMV

(summary.optweight), 24

27


	optweight
	optweight.fit
	optweight.svy
	optweight.svy.fit
	plot.optweight
	process_targets
	process_tols
	summary.optweight
	Index

