Package ‘rcaiman’

September 2, 2025
Type Package
Title CAnopy IMage ANalysis
Version 2.0.1
Date 2025-09-01

Description Tools for preprocessing and processing canopy photographs with
support for raw data reading. Provides methods to address variability in
sky brightness and to mitigate errors from image acquisition in
non-diffuse light. Works with all types of fish-eye lenses, and some
methods also apply to conventional lenses.

License GPL-3

BugReports https://github.com/GastonMauroDiaz/rcaiman/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends filenamer, magrittr, R (>= 3.5), terra

Imports methods, testthat, pracma, stats, utils, Rdpack, spatial,
lidR, tcltk, foreach, doParallel

Suggests autothresholdr, EBImage, imager, reticulate, hemispheR
RdMacros Rdpack
NeedsCompilation no

Author Gastén Mauro Diaz [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0362-8616>)

Maintainer Gastén Mauro Diaz <gastonmaurodiaz@gmail.com>
Repository CRAN
Date/Publication 2025-09-02 13:40:02 UTC

https://github.com/GastonMauroDiaz/rcaiman/issues
https://orcid.org/0000-0002-0362-8616

2 Contents

Contents
apply_by_direction 3
azimuth_image 5
binarize_by_region 6
binarize_with_thr e 8
calc_diameter e 9
calc_relative_radius e e 10
calc_spherical_distance 11
calc_zenith_colrow e 12
calibrate lens L s 13
chessboard 16
CIE_IMAZE o v vt e e e e e e e 17
cie_table L e 18
complementary_gradientSo 19
COMPULE_CANOPY_OPENNESS .+ « & v ¢ o v e e e e e e e e e e e e e e e e e 20
conventional_lens_image Lo 22
COITECt_VIGNELtING o v ittt e et e e e e e e e 23
CIOP_CAUML .« © . v v v v et e it e e e e e e e e e e 24
crosscalibrate_lens L e e 25
defuzzify e 26
display_caim e e e e e e 27
estimate_sun_angles L e 28
expand_noncircular L 30
extract_dn L L e s 31
extract_feature s 32
extract_radiometry L. e e 33
EXITACE_IT . . v v v v o o o e e e e e e e e 38
extract_sky_points e e e e 39
fisheye_to_equidistant e 40
fisheye_to_pano 41
fit_cie_model e 43
fit_coneshaped_model 46
fit_trend_surface L e 47
grow_black 49
hsp_compat e e e e e e e 50
interpolate_planar L. 52
interpolate_spherical L 54
nvert_gamma_cCorrectiono i e e e e e e 56
lens e e 57
normalize_ minmax e e e e 59
00tb_bin L e 60
ootb_sky_above L e e 61
ootb_sky_cie e e 63
optim_dist_to_black L 65
optim_sun_angles e e 67
paint_with_mask 68

polar_qtree L 69

apply_by_direction 3

read_bin e e 70
read_caim e e e s 71
read_caim_raw e e e e e e 73
rem_isolated_black_pixels L 75
rem_nearby_pPOints e e e e e e e e 76
rem_outliers L e e e 78
ring_segmentation e 80
SECtOr_Segmentationo i e e e e e e e e e e 81
select_sky_region L. e 81
sky_grid_centers e e 82
sky_grid_segmentationl 83
test_lens_coef e, 85
thr isodata 86
thr_mblt e 87
thr_twocorner e 88
validate_cie_model e 91
WItE_CAIM . . . o o o o o e e e e e e e e e e 92
Write_SKy_Cie 93
zenith_azimuth_from_row_col 95
zenith_image e e e e e 96
Index 98
apply_by_direction Apply a method by direction using a constant field of view
Description

Applies a method to each set of pixels defined by a direction and a constant field of view (FOV).
By default, several built-in methods are available (see method), but a custom function can also be
provided via the fun argument.

Usage

apply_by_direction(

spacing = 10,

laxity = 2.5,

fov = c(30, 40, 50),

method = c("thr_isodata”, "detect_bg_dn"”, "fit_coneshaped_model”,

"fit_trend_surface_npl1”, "fit_trend_surface_np6"),

fun = NULL,
parallel = FALSE

4 apply_by_direction

Arguments

r terra::SpatRaster of one or more layers (e.g., RGB channels or binary masks) in
fisheye projection.

z terra::SpatRaster generated with zenith_image().

a terra::SpatRaster generated with azimuth_image ().

m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.

spacing numeric vector of length one. Angular spacing (in degrees) between directions
to process.

laxity numeric vector of length one.

fov numeric vector. Field of view in degrees. If more than one value is provided,
they are tried in order when a method fails.

method character vector of length one. Built-in method to apply. Available options are
"thr_isodata”, "detect_bg_dn", "fit_coneshaped_model”, "fit_trend_surface_np1”,
and "fit_trend_surface_np6". Ignored if fun is provided.

fun NULL (default) or a function accepting r, z, a, and m as input and returning a
single-layer terra::SpatRaster object with the same number of rows and columns
as its first input, r.

parallel logical vector of length one. If TRUE, operations are executed in parallel.

Value

terra::SpatRaster object with two layers: "dn” for digital number values and "n" for the number of
valid pixels used in each directional estimate.

Note

This function is part of a manuscript currently under preparation.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

Automatic sky brightness estimation

sky <- apply_by_direction(r, z, a, m, spacing = 10, fov = c(30, 60),
method = "detect_bg_dn", parallel = TRUE)

plot(sky$dn)

plot(r / sky$dn)

azimuth_image 5

Using cone-shaped model
sky_cs <- apply_by_direction(caim, z, a, m, spacing = 15, fov = 60,

method = "fit_coneshaped_model”, parallel = TRUE)
plot(sky_cs$dn)

Using trend surface model
sky_s <- apply_by_direction(caim, z, a, m, spacing = 15, fov = 60,

method = "fit_trend_surface_np1"”, parallel = TRUE)
plot(sky_s$dn)

Using a custom thresholding function
thr <- apply_by_direction(r, z, a, m, 15, fov = c(30, 40, 50),
fun = function(r, z, a, m) {
thr <- tryCatch(thr_twocorner(r[m])$tm, error = function(e) NA)
r[] <- thr
r
1
parallel = TRUE
)
plot(thr$dn)
plot(binarize_with_thr(r, thr$dn))

End(Not run)

azimuth_image Build azimuth image

Description
Creates a single-layer raster in which pixel values represent azimuth angles, assuming an upwards-
looking hemispherical photograph with the optical axis vertically aligned.

Usage

azimuth_image(z, orientation = Q)

Arguments
z terra::SpatRaster generated with zenith_image().
orientation numeric vector of length one. Azimuth angle (in degrees) corresponding to the
direction at which the top of the image was pointing when the picture was taken.
This design follows the common field protocol of recording the angle at which
the top of the camera points.
Value

terra::SpatRaster with the same dimensions as the input zenith image. Each pixel contains the
azimuth angle in degrees, with zero representing North and angles increasing counter-clockwise.
The object carries attributes orientation and lens_coef.

6 binarize_by_region

Note

If orientation = @, North (0 deg) is located at the top of the image, as in conventional maps, but
East (90 deg) and West (270 deg) appear flipped relative to maps. To understand this, take two
flash-card-sized pieces of paper. Place one on a table in front of you and draw a compass rose on it.
Hold the other above your head, with the side facing down toward you, and draw another compass
rose following the directions from the one on the table. This mimics the situation of taking an
upwards-looking photo with a smartphone while viewing the screen, and it will result in a mirrored
arrangement. Compare both drawings to see the inversion.

Examples

z <- zenith_image (600, lens("Nikon_FCE9"))
a <- azimuth_image(z)

plot(a)

Not run:

a <- azimuth_image(z, 45)

plot(a)

End(Not run)

binarize_by_region Regional thresholding of greyscale images

Description

Perform thresholding of greyscale images by applying a method regionally, using a segmentation
map.

Usage

binarize_by_region(r, segmentation, method)

Arguments

r numeric terra::SpatRaster of one layer. Typically the blue channel of a canopy
photograph.

segmentation numeric terra::SpatRaster of one layer. A labeled segmentation map defining
the regions over which to apply the thresholding method. Ring segmentation
(see ring_segmentation()) is often preferred for fisheye images (Leblanc et
al. 2005).

method character vector of length one. Name of the thresholding method to apply. See
Details.

binarize_by_region 7

Details

This function supports several thresholding methods applied within the regions defined by segmentation:

Methods from the autothresholdr package: Any method supported by autothresholdr: :auto_thresh()
can be used by specifying its name. For example, "IsoData" applies the classic iterative in-
termeans algorithm Ridler and Calvard (1978), which is among the most recommended for
canopy photography (Jonckheere et al. 2005).

In-package implementation of IsoData: Use "thr_isodata” to apply thr_isodata(), a native
implementation of the same algorithm

Two-corner method: Use "thr_twocorner” to apply thr_twocorner (), which implements a ge-
ometric thresholding strategy based on identifying inflection points in the histogram, first in-
troduced to canopy photography by Macfarlane (2011). Since this method tend to fail, the
fallback is thr_isodata

Value

Logical terra::SpatRaster (TRUE for sky, FALSE for non-sky) of the same dimensions as r.

Note

When methods from the autothresholdr package are used, r values should be constrained to the
range [0, 1]. See normalize_minmax().

References

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction es-
timation of forests from digital hemispherical photography.” Agricultural and Forest Meteorology,
132(1-2), 96-114. doi:10.1016/j.agrformet.2005.06.003.

Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005). “Methodology compari-
son for canopy structure parameters extraction from digital hemispherical photography in boreal
forests.” Agricultural and Forest Meteorology, 129(3—4), 187-207. ISSN 0168-1923, doi:10.1016/
j-agrformet.2004.09.006.

Macfarlane C (2011). “Classification method of mixed pixels does not affect canopy metrics
from digital images of forest overstorey.” Agricultural and Forest Meteorology, 151(7), 833-840.
doi:10.1016/j.agrformet.2011.01.019.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” [EEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630—632. doi:10.1109/tsmc.1978.4310039.

Examples

Not run:

path <- system.file("external/DSCN4500.JPG", package = "rcaiman”
zenith_colrow <- c(1276, 980)

diameter <- 756%2

caim <- read_caim(path, zenith_colrow - diameter/2, diameter, diameter)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))

https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1016/j.agrformet.2004.09.006
https://doi.org/10.1016/j.agrformet.2004.09.006
https://doi.org/10.1016/j.agrformet.2011.01.019
https://doi.org/10.1109/tsmc.1978.4310039

8 binarize_with_thr

r <- invert_gamma_correction(caim$Blue)

r <- correct_vignetting(r, z, c(0.0638, -0.101)) %>% normalize_minmax()
rings <- ring_segmentation(z, 15)

bin <- binarize_by_region(r, rings, "thr_isodata")

plot(bin)

End(Not run)

binarize_with_thr Binarize with known thresholds

Description

Apply a threshold or a raster of thresholds to a grayscale image, producing a binary image.

Usage

binarize_with_thr(r, thr)

Arguments
r numeric terra::SpatRaster with one layer.
thr either a numeric vector of length one (for global thresholding) or a numeric
terra::SpatRaster with one layer (for local thresholding).
Details

This function supports both global and pixel-wise thresholding. It is a wrapper around the > operator
from the terra package. If a single numeric threshold is provided via thr, it is applied globally
to all pixels in r. If instead a terra::SpatRaster object is provided, local thresholding is performed,
where each pixel is compared to its corresponding threshold value.

This is useful after estimating thresholds using thr_twocorner (), thr_isodata(), or apply_by_direction(method
= "thr_isodata"), among other posibilities.

Value

Logical terra::SpatRaster (TRUE for sky, FALSE for non-sky) with the same dimensions as r.

Note

For global thresholding, thr must be greater than or equal to the minimum value of r and lower
than its maximum value.

calc_diameter 9

Examples

r <- read_caim()
bin <- binarize_with_thr(r$Blue, thr_isodata(r$Bluel[]))
plot(bin)

Not run:

This function is also compatible with thresholds estimated using
the 'autothresholdr' package:

require(autothresholdr)

r <- r$Blue

r <- normalize_minmax(r) %>% multiply_by(255) %>% round()

thr <- auto_thresh(r[], "IsoData")[1]

bin <- binarize_with_thr(r, thr)

plot(bin)

End(Not run)

calc_diameter Calculate diameter

Description

Calculate the diameter in pixels of a 180 deg fisheye image.

Usage

calc_diameter(lens_coef, radius, angle)

Arguments
lens_coef numeric vector. Polynomial coefficients of the lens projection function. See
lens().
radius numeric vector. Distance in pixels from the zenith.
angle numeric vector. Zenith angle in degrees.
Details

This function is useful when the recording device has a field of view smaller than 180 deg. Given
a lens projection function and data points consisting of radii (pixels) and their corresponding zenith
angles (0), it returns the horizon radius (i.e., the radius for 6 equal to 90 deg).

When working with non-circular hemispherical photography, this function helps determine the di-
ameter that a circular image would have if the equipment recorded the whole hemisphere, required
to build the correct zenith image to use as input for expand_noncircular().

The required data (radius—angle pairs) can be obtained following the instructions in the user manual
of Hemisfer software. A slightly simpler alternative is:

1. Find a vertical wall and a leveled floor, both well-constructed.

https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm
https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm

10 calc_relative_radius

2. Draw a triangle of 5 x 4 x 3 meters on the floor, with the 4-meter side along the wall.
3. Place the camera over the vertex 3 meters away from the wall, at a chosen height (e.g., 1.3 m).

4. Make a mark on the wall at the chosen height over the wall-vertex nearest to the camera vertex.
Make four more marks at 1 m intervals along a horizontal line. This creates marks for 0, 18,
34, 45, and 54 deg 6.

5. Before taking the photograph, align the zenith coordinates with the 0 deg # mark and ensure
the optical axis is level.

The line selection tool of ImageJ can be used to measure the distance in pixels between points on
the image. Draw a line and use the menu Analyze > Measure to obtain its length.

For obtaining the projection of a new lens, see calibrate_lens().

Value

Numeric vector of length one. Estimated diameter in pixels, rounded to the nearest even integer
(see zenith_image () for details).

Examples

Nikon D50 and Fisheye Nikkor 10.5mm lens
calc_diameter(lens("Nikkor_10.5mm"), 1202, 54)

calc_relative_radius Calculate relative radius

Description

Convert zenith angles (degrees) to normalized radial distance using the lens projection model.

Usage

calc_relative_radius(angle, lens_coef)

Arguments
angle numeric vector. Zenith angles in degrees.
lens_coef numeric vector. Polynomial coefficients of the lens projection function. See
lens().
Details

This helper maps zenith angle(s) to a relative radius in [0, 1] given the lens projection coefficients.

Value

Numeric vector of the same length as angle, constrained to [0, 1].

https://imagej.net/ij/docs/guide/146-19.html#toc-Subsection-19.2
https://imagej.net/ij/

calc_spherical_distance 11

Examples

calc_relative_radius(45, lens())

calc_spherical_distance
Calculate spherical distance

Description

Computes the angular distance, in radians, between directions defined by zenith and azimuth angles
on the unit sphere.

Usage

calc_spherical_distance(z1, al, z2, a2)

Arguments
z1 numeric vector. Zenithal angle in radians.
al numeric vector. Azimuthal angle in radians.
z2 numeric vector of length one. Zenithal angle in radians.
a2 numeric vector of length one. Azimuthal angle in radians.
Details

This function calculates the angle between two directions originating from the center of a unit
sphere, using spherical trigonometry. The result is commonly referred to as spherical distance or
angular distance. These terms are interchangeable when the sphere has radius one, as is standard in
many applications, including celestial coordinate systems and, by extension, canopy hemispherical
photography.

Spherical distance corresponds to the arc length of the shortest path between two points on the

surface of a sphere. When the radius is one, this arc length equals the angle itself, expressed in
radians.

Value

Numeric vector of the same length as z1 and a1, containing the spherical distance (in radians) from
each (z1, a1) point to the reference direction (z2, a2).

Examples

set.seed(1)

z1 <- rnorm(10, 45, 20) * pi/180

al <- rnorm(10, 180, 90) * pi/180
calc_spherical_distance(z1, al, @, 0)

12

calc_zenith_colrow

calc_zenith_colrow Calculate zenith raster coordinates

Description

Calculate zenith raster coordinates from points digitized with the open-source software package
‘Imagel’.

Usage

calc_zenith_colrow(path_to_csv)

Arguments

path_to_csv character vector of length one. Path to CSV file created with the ImageJ point
selection tool.

Details

In this context, “zenith” denotes the location in the image that corresponds to the projection of the
vertical direction when the optical axis is aligned vertically.

The technique described under the headline ‘Optical center characterization’ of the user manual of
the software Can-Eye can be used to acquire the data for determining the zenith coordinates. This
technique was used by Pekin and Macfarlane (2009), among others. Briefly, it consists in drilling a
small hole in the cap of the fisheye lens (away from the center), and taking about ten photographs
without removing the cap. The cap must be rotated about 30° before taking each photograph.

The point selection tool of ‘Imagel]” software should be used to manually digitize the white dots and
create a CSV file to feed this function. After digitizing the points on the image, use the dropdown
menu Analyze>Measure to open the Results window. To obtain the CSV file, use File>Save As...

Another method (only valid when enough of the circle perimeter is depicted in the image) is taking
a very bright picture (e.g., of a white-painted corner of a room) with the lens uncovered (do not use
any mount). Then, digitize points over the circle perimeter. This was the method used for producing
the example file (see Examples). It is worth noting that the perimeter of the circle depicted in a
circular hemispherical photograph is not necessarily the horizon.

Value

Numeric vector of length two. Raster coordinates of the zenith. These coordinates follow image
(raster) convention: the origin is in the upper-left, and the vertical axis increases downward, like a
spreadsheet. This contrasts with Cartesian coordinates, where the vertical axis increases upward.

Note

This function assumes that all data points belong to the same circle, meaning that it does not support
multiple holes when the Can-Eye procedure of drilling the lens cap is applied. The circle is fitted
using the method presented by Kasa (1976).

https://can-eye.paca.hub.inrae.fr/documentation/documentation
https://can-eye.paca.hub.inrae.fr/documentation/documentation
https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

calibrate_lens 13

References

KasaI (1976). “A circle fitting procedure and its error analysis.” IEEE Transactions on Instrumen-
tation and Measurement, IM=25(1), 8—14. ISSN 1557-9662, doi:10.1109/tim.1976.6312298.

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298-1320.
doi:10.3390/rs1041298.

Examples
Not run:
path <- system.file("external/points_over_perimeter.csv”,

package = "rcaiman")
calc_zenith_colrow(path)

End(Not run)

calibrate_lens Calibrate lens

Description

Calibrate a fisheye lens to derive the mathematical relationship between image-space radial dis-
tances from the zenith and zenith angles in hemispherical space (assuming upward-looking hemi-
spherical photography with the optical axis vertically aligned).

Usage

calibrate_lens(path_to_csv, degree = 3)

Arguments

path_to_csv character vector. Path(s) to CSV file(s) created with the ImageJ point selection
tool. See Note.

degree numeric vector of length one. Polynomial model degree.

Details

Fisheye lenses have a wide field of view and radial symmetry with respect to distortion. This
property allows precise fitting of a polynomial model to relate pixel distances to zenith angles.
The method implemented here, known as the "simple method", is described in detail by Diaz et al.
(2024).

https://doi.org/10.1109/tim.1976.6312298
https://doi.org/10.3390/rs1041298

14 calibrate_lens

Value

List with named elements:

ds Data frame used to fit the model.

model 1m object fitted to pixel distance vs. zenith angle.

horizon_radius Radius at 90 deg.

lens_coef Numeric vector of polynomial model coefficients for predicting relative radius.
zenith_colrow Raster coordinates of the zenith push pin.

max_theta Maximum zenith angle (deg).

max_theta_px Distance in pixels between the zenith and the maximum zenith angle.

Step-by-step guide for producing a CSV file to feed this function

Materials:

* this package and Image]

* camera and lens

* tripod

* standard yoga mat

* table at least as wide as the yoga mat width

* twenty two push pins of different colors

* one print of this sheet (A1 size, almost like a research poster).
* scissors

* some patience

Instructions:

Cut the sheet by the dashed line. Place the yoga mat extended on top of the table. Place the sheet
on top of the yoga mat. Align the dashed line with the yoga mat border closest to you. Place push
pins on each cross. If you are gentle, the yoga mat will allow you to do that without damaging the
table. Of course, other materials could be used to obtain the same result, such as cardboard, foam,
nails, etc.

https://imagej.net/ij/download.html
https://osf.io/tudzc

calibrate_lens 15

Place the camera on the
tripod. Align its optical axis with the table while looking for getting an image showing the over-
lapping of the three pairs of push pins, as instructed in the print. In order to take care of the line of
pins at 90° relative to the optical axis, it may be of help to use the naked eye to align the entrance
pupil of the lens with the pins. The alignment of the push pins only guarantees the position of the
lens entrance pupil, the leveling should be cheeked with an instrument, and the alignment between
the optical axis and the radius of the zenith push pin should be taken into account. In practice,
the latter is achieved by aligning the camera body with the orthogonal frame made by the quarter
circle.

Take a photo and transfer it to the computer, open it with ImageJ, and use the point selection tool
to digitize the push pins, starting from the zenith push pin and not skipping any shown push pin.
End with an additional point where the image meets the surrounding black (or the last pixel in
case there is not blackness because it is not a circular hemispherical image. There is no need to
follow the line formed by the push pins). Then, use the dropdown menu Analyze>Measure to
open the window Results. To obtain the CSV, use File>Save As...

s Aralye Pugns Window Help
N ALR] A 2| mfwlus] o] 48] >

5
E
P
3
™
@
|
ar
=

2aEEs
LEBRSE

CEBEEE S

https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool

16 chessboard

Note

To calibrate different directions, think of the fisheye image as an analog clock. To calibrate 3
o’clock, attach the camera to the tripod in landscape mode while leaving the quarter-circle at the
lens’s right side. To calibrate 9 o’clock, rotate the camera to put the quarter-circle at the lens’s left
side. To calibrate 12 and 6 o’clock, do the same but with the camera in portrait mode.

References

Diaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

See Also

test_lens_coef (), crosscalibrate_lens(), extract_radiometry()

Examples

path <- system.file("external/Results_calibration.csv"”, package = "rcaiman")
calibration <- calibrate_lens(path)

coefficients(calibration$model)

calibration$lens_coef %>% signif(3)

calibration$horizon_radius

Not run:
test_lens_coef(calibration$lens_coef) #MacOS and Windows tend to differ here
test_lens_coef(c(0.628, 0.0399, -0.0217))

End(Not run)

.fp <- function(theta, lens_coef) {

x <- lens_coef[1:5]

x[is.na(x)] <- @

for (i in 1:5) assign(letters[i], x[il)

a * theta + b x theta”2 + ¢ * theta”3 + d * theta’4 + e * theta"5
3

plot(calibration$ds)
theta <- seq(@, pi/2, pi/180)
lines(theta, .fp(theta, coefficients(calibration$model)))

chessboard Perform chessboard segmentation

Description

Segment a raster into square regions of equal size arranged in a chessboard-like pattern.

https://doi.org/10.1016/j.agrformet.2024.110020

cie_image 17

Usage

chessboard(r, size)

Arguments
r numeric terra::SpatRaster. One or more layers used to drive heterogeneity.
size Numeric vector of length one. Size (in pixels) of each square segment. Must be
a positive integer.
Details

This function divides the extent of a terra::SpatRaster into non-overlapping square segments of the
given size, producing a segmentation map where each segment has a unique integer label. It can be
an alternative to sky_grid_segmentation() in special cases.

Value

terra::SpatRaster with one layer and integer values, where each unique value corresponds to a
square-segment ID.

Examples

caim <- read_caim()

seg <- chessboard(caim, 20)
plot(caim$Blue)
plot(extract_feature(caim$Blue, seg))

cie_image CIE sky image

Description

Generate an image of relative radiance or luminance based on the CIE General Sky model.

Usage

cie_image(z, a, sun_angles, sky_coef)

Arguments
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().
sun_angles named numeric vector of length two, with components z and a in degrees, e.g.,

c(z=49.3,a=123.1). See estimate_sun_angles() for details.

sky_coef numeric vector of length five. Parameters of the CIE sky model.

18 cie_table

Value

terra::SpatRaster with one layer whose pixel values represent relative luminance or radiance across
the sky hemisphere, depending on whether the data used to obtain sky_coef was luminance or
radiance.

Note

Coefficient sets and formulation are available in cie_table.

Examples

z <- zenith_image(50, lens())

a <- azimuth_image(z)

sky_coef <- cie_table[4,1:5] %>% as.numeric()
sun_angles <- c(z = 45, a = 0)
plot(cie_image(z, a, sun_angles, sky_coef))

cie_table Set of 15 CIE Standard Skies

Description

The Commission Internationale de I’Eclairage (CIE; International Commission on Illumination)
standard (CIE 2004) defines 15 pre-calibrated sky luminance distributions, each described by a pair

of analytical functions, the gradation function ®(0) = 1 + a - exp (ﬁ), and the indicatrix

function f(y) =1+ c- [exp(d - X) — exp (d . g)] + e - cos? x. Combined, they can predict the

relative radiance pr in any sky direction (6, ¢) as: pr° (0, ¢) = ég()(')))c-(;(((Xe(,g ;Z%%ﬁ)@))), where 6 is the

zenith angle, ¢ is the azimuth angle, and 0, ¢ are the zenith and azimuth of the sun disk.

Usage

cie_table

Format

data. frame with 15 rows and 8 columns:

a gradation function parameter.

b gradation function parameter.

¢ indicatrix function parameter.

d indicatrix function parameter.

e indicatrix function parameter.

indicatrix_group factor with six categories and numerical tags.

general_sky_type factor with three categories: "Overcast”, "Clear”, and "Partly cloudy”.

description user-friendly description of the sky type.

complementary_gradients 19

Source

Lietal. (2016)

References

CIE (2004). “ISO 15469:2004(E) / CIE S 011/E:2003 - Spatial distribution of daylight — CIE
standard general sky.” https://www.iso.org/standard/38608.html. International Standard.

Li DHW, Lou S, Lam JC, Wu RHT (2016). “Determining solar irradiance on inclined planes from
classified CIE (International Commission on Illumination) standard skies.” Energy, 101, 462—470.
doi:10.1016/j.energy.2016.02.054.

complementary_gradients
Calculate complementary gradients

Description

Compute three color-opponent gradients to enhance the visual separation between sky and canopy
in hemispherical photographs, particularly under diffuse light or complex cloud patterns.

Usage

complementary_gradients(caim)

Arguments
caim numeric terra::SpatRaster with three layers named "Red”, "Green”, and "Blue”.
Digital numbers should be linearly related to radiance. See read_caim_raw()
for details.
Details

The method exploits chromatic differences between the red, green, and blue bands, following a
simplified opponent-color logic. Each gradient is normalized by total brightness and modulated by
a logistic contrast function to reduce the influence of underexposed regions:

* "green_magenta” = (R — G+ B)/(R + G + B) - logistic(brightness)

» "yellow_blue” = (—R — G + B)/(R + G + B) - logistic(brightness)

* "red_cyan" = (—R+ G+ B)/(R + G + B) - logistic(brightness)

The logistic(brightness) term is computed as:
1

o (i)

where qq 1 is the 10th percentile of brightness values (x = R+G+ B), and I QR is their interquartile
range.

logistic(x) =

This weighting suppresses gradients in poorly exposed regions to reduce spurious values caused by
low signal-to-noise ratios.

https://www.iso.org/standard/38608.html
https://doi.org/10.1016/j.energy.2016.02.054

20 compute_canopy_openness

Value

Numeric terra::SpatRaster with three layers and the same geometry as caim. The layers ("green_magenta”,

n o n

"yellow_blue”, "red_cyan") are chromatic gradients modulated by brightness.

Note

This function is part of a paper under preparation.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

Not run:

caim <- read_caim()

com <- complementary_gradients(caim)
plot(com)

End(Not run)

compute_canopy_openness
Calculate canopy openness

Description

Calculate canopy openness from a binarized hemispherical image with angular coordinates.

Usage

compute_canopy_openness(bin, z, a, m = NULL, angle_width = 10)

Arguments
bin logical terra::SpatRaster with one layer. A binarized hemispherical image. See
binarize_with_thr() for details.
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image ().
m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected

pixels.

angle_width numeric vector of length one. Angle in deg that must divide both 0-360 and
0-90 into an integer number of segments. Retrieve a set of valid values by run-
ning lapply(c(45, 30, 18, 10), function(a) vapply(@:6, function(x) a/2*x,
).

compute_canopy_openness 21

Details

Canopy openness is computed following the equation from Gonsamo et al. (2011):

N

CO=> GF(¢:,0;)-

i=1

COS(QLi) — COS(GQJ)

ng

where GF(¢;,0;) is the gap fraction in cell 4, ¢, ; and 65 ; are the lower and upper zenith angles
of the cell, n; is the number of cells in the corresponding zenith ring, and N is the total number of
cells.

When a mask is provided via the m argument, the equation is adjusted to compensate for the reduced
area of the sky vault:

Zf;l GF(¢;,0;) - w; with s = cos(61,;) — cos(a,;)

CO =
Zi]\il Wy i

The denominator ensures that the resulting openness value remains scale-independent. Without
this normalization, masking would lead to underestimation, as the numerator alone assumes full
hemispherical coverage.

Value

Numeric vector of length one, constrained to the range [0, 1].

References

Gonsamo A, Walter JN, Pellikka P (2011). “CIMES: A package of programs for determining
canopy geometry and solar radiation regimes through hemispherical photographs.” Computers and
Electronics in Agriculture, 79(2), 207-215. doi:10.1016/j.compag.2011.10.001.

Examples

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())

a <- azimuth_image(z)

m <- select_sky_region(z, @, 70)

bin <- binarize_with_thr(caim$Blue, thr_isodata(caim$Blue[m]))
plot(bin)

compute_canopy_openness(bin, z, a, m, 10)

https://doi.org/10.1016/j.compag.2011.10.001

22 conventional_lens_image

conventional_lens_image
Generate conventional-lens-like image

Description

Create an RGB image that resembles a photo taken with a conventional lens, using a small patch
from the example hemispherical image.

Usage

conventional_lens_image()

Details

This is a fixed crop and reorientation of read_caim(). It does not perform any re-projection.
Intended for documentating functions.

The following code was used to define the region:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- rast(z)
m[] <- calc_spherical_distance(
z[]1 = pi / 180,
al]l » pi / 180,
1,# hinge-angle
90 * pi / 180
)
m <- l!binarize_with_thr(m, 30 * pi / 180)
mlis.na(z)] <- 0
m

x110)
plot(m * caim$Blue)
za <- click(c(z, a))

za
row_col <- row_col_from_zenith_azimuth(z, a, zal[,11, zal[,2])
plot(caim$Blue)

points(row_col$col, nrow(caim) - row_col$row, col = 2, pch = 10)
mn_y <- min(nrow(caim) -row_col$row)

mx_y <- max(nrow(caim) -row_col$row)

mn_x <- min(row_col$col)

mx_x <- max(row_col$col)

r <- terra::crop(caim$Blue, terra::ext(mn_x, mx_x, mn_y, mx_y))
plot(r)

correct_vignetting

Value

Three-layer terra::SpatRaster with bands in RGB order.

See Also

read_caim()

Examples

conventional_lens_image()

23

correct_vignetting Correct vignetting effect

Description

Apply a vignetting correction to an image using a polynomial model.

Usage

correct_vignetting(r, z, lens_coef_v)

Arguments
r terra::SpatRaster of one or more layers (e.g., RGB channels or binary masks) in
fisheye projection.
z terra::SpatRaster generated with zenith_image().
lens_coef_v numeric vector. Coefficients of the vignetting function f,(0) = 1 + af) + b6? +
-+ +mf", where 0 is the zenith angle (in radians) and a, b, . . . , m are the poly-
nomial coefficients. Degrees up to 6 are supported. See extract_radiometry()
for guidance on estimating these coefficients.
Details

Vignetting is the gradual reduction of image brightness toward the periphery. This function corrects

it by applying a device-specific correction as a function of the zenith angle at each pixel.

Value

terra::SpatRaster with the same content as r but with pixel values adjusted to correct for vignetting,

preserving all other properties (layers, names, extent, and CRS).

24 crop_caim

Examples

Not run:

path <- system.file("external/APC_0836.jpg", package = "rcaiman")
caim <- read_caim(path)

z <- zenith_image(2132, lens("0lloclip”))

a <- azimuth_image(z)

zenith_colrow <- c(1063, 771)

caim <- expand_noncircular(caim, z, zenith_colrow)
m <- lis.na(caim$Red) & !is.na(z)
caim[!m] <- 0

bin <- binarize_with_thr(caim$Blue, thr_isodata(caim$Blue[m]))
display_caim(caim$Blue, bin)

caim <- invert_gamma_correction(caim, 2.2)
caim <- correct_vignetting(caim, z, c(-0.0546, -0.561, 0.22)) %>%

normalize_minmax()

End(Not run)

crop_caim Crop a canopy image

Description
Extracts a rectangular region of interest (ROI) from a canopy image. This function complements
read_caim() and read_caim_raw().

Usage

crop_caim(r, upper_left = NULL, width = NULL, height = NULL)

Arguments
r terra::SpatRaster.
upper_left numeric vector of length two. Pixel coordinates of the upper-left corner of the

ROI, in the format c(column, row).

width, height numeric vector of length one. Size (in pixels) of the rectangular ROI to read.

Value

terra::SpatRaster object containing the same layers and values as r but restricted to the selected
ROI, preserving all other properties.

Note

rcaiman uses terra without geographic semantics: rasters are kept with unit resolution (cell size =
1) and a standardized extent ext (@, ncol, @, nrow) with CRS EPSG:7589.

crosscalibrate_lens 25

Examples

caim <- read_caim()

ncell(caim)
caim <- crop_caim(caim, c(231,334), 15, 10)
ncell(caim)
crosscalibrate_lens Cross-calibrate lens
Description

Given two photographs taken from the same point (matching entrance pupils and aligned optical
axes), with calibrated and uncalibrated cameras, derives a polynomial projection for the uncali-
brated device. Intended for cases where a camera calibrated with a method of higher accuracy than
calibrate_lens() is available, or when there is a main camera to which all other devices should
be adjusted.

Points must be digitized in tandem with ImageJ and saved as CSV files. See calibrate_lens()
for background and general concepts.

Usage

crosscalibrate_lens(
path_to_csv_uncal,
path_to_csv_cal,
zenith_colrow_uncal,
zenith_colrow_cal,
diameter_cal,
lens_coef,
degree = 3

Arguments

path_to_csv_uncal, path_to_csv_cal
character vectors of length one. Paths to CSV files created with ImageJ’s point
selection tool (uncalibrated and calibrated images, respectively).
zenith_colrow_uncal, zenith_colrow_cal
numeric vectors of length two. Raster coordinates of the zenith for the uncali-
brated and calibrated images; see calc_zenith_colrow().
diameter_cal numeric vector of length one. Image diameter (pixels) of the calibrated camera.
lens_coef numeric vector. Lens projection coefficients of the calibrated camera.

degree numeric vector of length one. Polynomial degree for the uncalibrated model fit
(default 3).

26 defuzzity

Details

Estimate a lens projection for an uncalibrated camera by referencing a calibrated camera pho-
tographed from the exact same location.

Value

List with components:

ds data.frame with zenith angle (theta, radians) and pixel radius (px) from the uncalibrated
camera.

model 1m object: polynomial fit of px ~ theta.
horizon_radius numeric vector of length one. Pixel radius at 90 deg.

lens_coef numeric vector. Distortion coefficients normalized by horizon_radius.

See Also

calibrate_lens(), calc_zenith_colrow()

defuzzify Defuzzify a fuzzy classification

Description

Converts fuzzy membership values into a binary classification using a regional approach that pre-
serves aggregation consistency between the fuzzy and binary representations.

Usage

defuzzify(mem, segmentation)

Arguments

mem numeric terra::SpatRaster of one layer. Degree of membership in a fuzzy classi-
fication.

segmentation single-layer terra::SpatRaster with integer values.

Details

The conversion is applied within segments defined by segmentation, ensuring that, in each seg-
ment, the aggregated Boolean result matches the aggregated fuzzy value. This approach is well
suited for converting subpixel estimates, such as gap fraction, into binary outputs.

Value

Logical terra::SpatRaster of the same dimensions as mem, where each pixel value represents the
binary version of mem after applying the regional defuzzification procedure.

display_caim 27

Note

This method is also available in the HSP software package. See hsp_compat ().

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

path <- system.file("external/example.txt"”, package = "rcaiman")
sky_cie <- read_sky_cie(gsub(".txt", "", path), z, a)

sky_above <- ootb_sky_above(sky_cie$model$rr$sky_points, z, a, sky_cie)

ratio <- r / sky_above$dn_raster

ratio <- normalize_minmax(ratio, @, 1, TRUE)

plot(ratio)

g <- sky_grid_segmentation(z, a, 10)

bin2 <- defuzzify(ratio, g)

plot(bin2) # unsatisfactory results due to light conditions

End(Not run)

display_caim Display a canopy image

Description

Wrapper for EBImage: :display() that streamlines the visualization of canopy images, optionally
overlaying binary masks and segmentation borders. It is intended for quick inspection of processed
or intermediate results in a graphical viewer.

Usage

display_caim(caim = NULL, bin = NULL, g = NULL)

Arguments
caim terra::SpatRaster. Typically the output of read_caim(). Can be multi- or single-
layer.
bin logical terra::SpatRaster with one layer. A binarized hemispherical image. See
binarize_with_thr() for details.
g single-layer terra::SpatRaster with integer values. Sky segmentation map pro-

duced by sky_grid_segmentation().

28 estimate_sun_angles

Value

Invisible NULL. Called for side effects (image viewer popup).

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())

r <- normalize_minmax(caim$Blue)

g <- ring_segmentation(z, 30)

bin <- binarize_by_region(r, g, method = "thr_isodata")
display_caim(caim$Blue, bin, g)

End(Not run)

estimate_sun_angles Estimate sun angular coordinates

Description

Estimates the sun’s zenith and azimuth angles (deg) from a canopy hemispherical photograph, using
either direct detection of the solar disk or indirect cues from the circumsolar region.

Usage
estimate_sun_angles(
r ’
z ’
a,
bin,
g,
angular_radius_sun = 30,
method = "assume_obscured”
)
Arguments
r numeric terra::SpatRaster of one layer. Typically the blue band of a canopy
image.
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image ().
bin logical terra::SpatRaster of one layer. Binary image where TRUE marks candi-
date sky pixels. Typically the output of binarize_with_thr().
g single-layer terra::SpatRaster with integer values. Sky segmentation map pro-

duced by sky_grid_segmentation().

estimate_sun_angles 29

angular_radius_sun
numeric vector of length one. Maximum angular radius (in degrees) used to
define the circumsolar region.

method character vector of length one. Estimation mode: "assume_obscured” (default)
or "assume_veiled".

Details

This function can operate under two alternative assumptions for estimating the sun position:

Veiled sun The solar disk is visible or partially obscured; the position is inferred from localized
brightness peaks.

Obscured sun The solar disk is not visible; the position is inferred from radiometric and spatial
cues aggregated over the circumsolar region.

When method = "assume_veiled”, g and angular_radius_sun are ignored. Estimates refer to
positions above the horizon; therefore, estimated angles may require further manipulation if the
photograph was acquired under crepuscular light.

Value

Named numeric vector of length two, with names z and a, representing the sun’s zenith and azimuth
angles (in degrees).

Note

A scientific article presenting and validating this method is currently under preparation.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata") &
select_sky_region(z, 0, 88)

g <- sky_grid_segmentation(z, a, 10)
sun_angles <- estimate_sun_angles(r, z, a, bin, g,
angular_radius_sun = 30)
row_col <- row_col_from_zenith_azimuth(z, a,
sun_angles["z"],
sun_angles["a"])
plot(caim$Blue)
points(row_col[1,2], nrow(caim) - row_col[1,1], col = "yellow”,
pch = 8, cex = 3)

End(Not run)

30 expand_noncircular

expand_noncircular Expand non-circular

Description

Add NA margins to a hemispherical photograph to align radiance at the zenith with the image center.

In this context, “zenith” denotes the location in the image that corresponds to the projection of the

vertical direction when the optical axis is aligned vertically. Intended for non-circular images.
Usage

expand_noncircular(caim, z, zenith_colrow)

Arguments
caim terra::SpatRaster. Typically the output of read_caim().
z terra::SpatRaster generated with zenith_image().

zenith_colrow numeric vector of length two. Raster coordinates of the zenith (column, row).
See calc_zenith_colrow(). Coordinates follow the raster convention (col-
umn, row), not matrix order.

Value

terra::SpatRaster with the same layers and pixel values as caim, but with NA margins added to center
the zenith.

Note

rcaiman uses terra without geographic semantics: rasters are kept with unit resolution (cell size =
1) and a standardized extent ext (@, ncol, @, nrow) with CRS EPSG:7589.

Examples

Not run:

Non-circular fisheye images from a smartphone with an auxiliary Lens
(also applicable to non-circular fisheye images from DSLR cameras)
path <- system.file("external/APC_0836.jpg", package = "rcaiman")
caim <- read_caim(path)

z <- zenith_image(2132/2, 1lens("0Olloclip”))

a <- azimuth_image(z)

zenith_colrow <- c(1063, 771)/2

caim <- expand_noncircular(caim, z, zenith_colrow)

plot(caim$Blue, col = seq(@, 1, 1/255) %>% grey())

m <- lis.na(caim$Red) & !is.na(z)

plot(m, add = TRUE, alpha = 0.3, legend = FALSE)

End(Not run)

extract_dn 31

extract_dn Extract digital numbers from sky points

Description
Obtain digital numbers from a raster at positions defined by sky points, with optional local averag-
ing.

Usage

extract_dn(r, sky_points, use_window = TRUE)

Arguments
r terra::SpatRaster. Image from which sky_points were sampled (or any raster
with identical dimensions).
sky_points data.frame with columns row and col (raster coordinates).
use_window logical of length one. If TRUE (default), use a 3 x 3 local mean around each
point; if FALSE, use only the central pixel.
Details

Wraps terra: :extract() to support a 3 x 3 window centered on each target pixel (local mean).
When it is disabled, only the central pixel value is retrieved.

Value
data.frame containing the original sky_points plus one column per layer in r (named after the
layers).

Note

For instructions on manually digitizing sky points, see the “Digitizing sky points with ImageJ” and
“Digitizing sky points with QGIS” sections in fit_cie_model().

See Also

extract_sky_points()

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

See fit_cie_model() for details on below file

32 extract_feature

path <- system.file("external/sky_points.csv"”,
package = "rcaiman”
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")
head(sky_points)
plot(caim$Blue)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

sky_points <- extract_dn(caim, sky_points)
head(sky_points)

To aggregate DNs across points (excluding 'row' and 'col'):
apply(sky_points[, -(1:2)1, 2, mean, na.rm = TRUE)

End(Not run)

extract_feature Extract feature

Description

Extract a numeric or logical summary from segmented raster regions using a user-defined reducer,
returning one value per segment as a raster map or a named vector.

Usage
extract_feature(
r y
segmentation,
fun = mean,
return = "raster”,
ignore_label_0 = TRUE
)
Arguments
r numeric terra::SpatRaster with one layer.

segmentation single-layer terra::SpatRaster. Segmentation map of r, typically created with
functions such as sky_grid_segmentation(), ring_segmentation() or sector_segmentation(),
but any raster with integer segment labels is accepted.

fun function taking a numeric/logical vector and returning a single numeric or logi-
cal value (default mean).

return character of length one. FEither "raster” (default) or "vector”, controlling
whether to return a map with per-segment values or a named vector (one value
per segment).

ignore_label_0 logical of length one. If TRUE, the segment labeled @ is ignored.

extract_radiometry 33

Details

Segments labeled @ can be ignored via ignore_label_@ = TRUE. The function in fun must return a
single numeric or logical value for any input vector (e.g., mean, median, or a custom reducer).

Value

If return = "raster”, a terra::SpatRaster where each pixel holds its segment’s feature value. If
return = "vector”, a named numeric (or logical) vector with one value per segment.

Examples

r <- read_caim()

z <- zenith_image(ncol(r),lens())

a <- azimuth_image(z)

g <- sky_grid_segmentation(z, a, 10)
print(extract_feature(r$Blue, g, return = "vector"))
plot(extract_feature(r$Blue, g, return = "raster”))

extract_radiometry Extract radiometry data for calibration

Description

Buid a datasets for vignetting modeling by sistematically extracting radiometry from images taken
with the aid of a portable light source and the calibration board detailed in calibrate_lens().

Usage

extract_radiometry(l, size_px = NULL)

Arguments
1 list of preprocessed images (terra::SpatRaster) suitable for radiometry sampling.
Images must comply with the equidistant projection.
size_px numeric vector of length one. Diameter (pixels) of the circular sampling area at
the image center; off-center, the sampled region becomes an ellipse under the
equidistant projection. If NULL (default), two percent of image width is used
(round(terra::ncol(r) x0.02)).
Value

data.frame con dos columnas:

theta zenith angle en radianes.

radiometry digital number normalizado.

34 extract_radiometry

Guidance

Lenses have the inconvenient property of increasingly attenuating light along the direction orthog-
onal to the optical axis. This phenomenon is known as the vignetting effect and varies with lens
model and aperture setting. The method outlined here, known as the simple method, is explained in
details in Dfaz et al. (2024). Next explanation might serve mostly as a quick recap of it.

The development of the simple method was done with a Kindle Paperwhite eBooks reader of 6"
with built-in light. However, an iPhone 6 plus was also tested in the early stages of development and
no substantial differences were observed. A metal bookends desk book holder was used to fasten
the eBook reader upright and a semi-transparent paper to favor a Lambertian light distribution. In
addition, the latter was used to draw on in order to guide pixel sampling. The book holder also
facilitated the alignment of the screen with the dotted lines of the printed quarter-circle.

e,

- _ ! R SRS o s o general guideline, a
wide variety of mobile devices could be used as light sources, but if scattered data points are ob-
tained with it, then other light sources should be tested in order to double check that the light quality
is not the reason for points scattering.

i1

With the room only illuminated by the portable light source, nine photographs should be taken with

extract_radiometry 35

the light source located in the equivalent to 0, 10, 20, 30, 40, 50, 60, 70, and 80 degrees of zenith
angle, respectively. Camera configuration should be in manual mode and set with the aperture
(f/number) for which a vignetting function is required. The shutter speed should be regulated to
obtain light-source pixels with middle grey values. The nine photographs should be taken without
changing the camera configuration and the light conditions.

This code exemplifies how
to use the function to obtain data and base R functions to obtain the vignetting function (f,).

zenith_colrow <- c(1500, 997)

diameter <- 947%2

z <- zenith_image(diameter, c(0.689, 0.0131, -0.0295))
a <- azimuth_image(z)

.read_raw <- function(path_to_raw_file) {
r <- read_caim_raw(path_to_raw_file, only_blue = TRUE)
r <- crop_caim(r, zenith_colrow - diameter/2, diameter, diameter)
r <- fisheye_to_equidistant(r, z, a, m, radius = diameter/2,

36

extract_radiometry

k=1, p=1, rmax = 100)
3

1 <- Map(.read_raw, dir("raw/up/", full.names = TRUE))
up_data <- extract_radiometry(l)

1 <- Map(.read_raw, dir("raw/down/", full.names = TRUE))
down_data <- extract_radiometry(l)

1 <- Map(.read_raw, dir("raw/right/", full.names = TRUE))
right_data <- extract_radiometry(l)

1 <- Map(.read_raw, dir("raw/left/", full.names = TRUE))
left_data <- extract_radiometry(l)

ds <- rbind(up_data, down_data, right_data, left_data)

plot(ds, xlim = c(@, pi/2), ylim= c(0.5,1.05),
col = c(rep(1,9),rep(2,9),rep(3,9),rep(4,9)))
legend("bottomleft”, legend = c("up”, "down”, "right", "left"),
col = 1:4, pch = 1)

fit <= Im((1 - ds$radiometry) ~ poly(ds$theta, 3, raw = TRUE) - 1)
summary (fit)

coef <- -fit$coefficients #did you notice the minus sign?

.fv <= function(x) 1 + coef[1] * x + coef[2] * x*2 + coef[3] * x"3
curve(.fv, add = TRUE, col = 2)

coef

Once one of the aperture settings is calibrated, it can be used to calibrate all the rest. To do so,
the equipment should be used to take photographs in all desired exposition and without moving the
camera, including the aperture already calibrated and preferably under an open sky in stable diffuse
light conditions. Below code can be used as a template.

zenith_colrow <- c(1500, 997)

diameter <- 947%2

z <- zenith_image(diameter, c(0.689, 0.0131, -0.0295))
a <- azimuth_image(z)

files <- dir("raw/", full.names = TRUE)

1 <- list()
for (i in seq_along(files)) {
if (i ==1){

because the first aperture was the one already calibrated

.read_raw <- function(path_to_raw_file) {
r <- read_caim_raw(path_to_raw_file, only_blue = TRUE)
r <- crop_caim(r, zenith_colrow - diameter/2, diameter, diameter)
r <- correct_vignetting(r, z, c(0.0302, -0.320, 0.0908))
r <- fisheye_to_equidistant(r, z, a, m, radius = diameter/2,

k=1, p=1, rmax = 100)
}
} else {

extract_radiometry 37

.read_raw <- function(path_to_raw_file) {
r <- read_caim_raw(path_to_raw_file, only_blue = TRUE)
r <- crop_caim(r, zenith_colrow - diameter/2, diameter, diameter)
r <- fisheye_to_equidistant(r, z, a, m, radius = diameter/2,
k=1, p=1, rmax = 100)
3
3
1[[i]] <- .read_raw(files[il])
}

ref <- 1[[1]]
rings <- ring_segmentation(zenith_image(ncol(ref), lens()), 3)
theta <- seq(1.5, 90 - 1.5, 3) * pi/180

.fun <- function(r) {
r <- extract_feature(r, rings, return = "vector”)
r/rf1]

3

1 <- Map(.fun, 1)

.fun <- function(x) {
x / 1[[1]J1[] # because the first is the one already calibrated

3
radiometry <- Map(.fun, 1)

1 <- list()
for (i in 2:length(radiometry)) {
1[[i-1]] <- data.frame(theta = theta, radiometry = radiometry[[i]I1[1)

}
ds <- 1[[1]]
head(ds)

The result is one dataset (ds) for each file. This is all what it is needed before using base R functions
to fit a vignetting function

Note

This function does not fit the vignetting function itself. The output is a dataset to be used in subse-
quent modeling steps. See above sections for guidance.

References

Diaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

https://doi.org/10.1016/j.agrformet.2024.110020

38 extract_rr

extract_rr Extract digital numbers at sky points and normalize by estimated
zenith radiance

Description
Compute relative radiance at selected sky points by dividing their digital numbers (DN) by an
estimated zenith DN.

Usage

extract_rr(r, z, a, sky_points, no_of_points = 3, use_window = TRUE)

Arguments
r terra::SpatRaster. Raster supplying the DN values; must share rows and columns
with the image used to obtain sky_points. DN must be linearly related to
radiance. See read_caim_raw().
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image ().
sky_points data.frame with columns row and col (raster coordinates).

no_of_points numeric vector of length one or NULL. Number of near-zenith points used to
estimate the zenith DN using inverse distance weighting (power = 2). If NULL,
the zenith DN is forced to 1, so rr =dn.

use_window logical of length one. If TRUE (default), use a 3 x 3 local mean around each
point; if FALSE, use only the central pixel.

Value
List with named elements:

zenith_dn numeric. Estimated DN at the zenith.

sky_points data.frame with columns row, col, a, z, dn, and rr (pixel location, angular coordi-
nates, extracted DN, and relative radiance). If no_of_points is NULL, zenith_dn =1 and dn
=rr.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

See fit_cie_model() for details on the CSV file
path <- system.file("external/sky_points.csv"”,

package = "rcaiman")
sky_points <- read.csv(path)

extract_sky_points 39

sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")
head(sky_points)

plot(caim$Blue)

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

rr <- extract_rr(caim$Blue, z, a, sky_points, 1)

points(rrsky_pointscol, nrow(caim) - rrsky_pointsrow, col = 3, pch = @)

End(Not run)

extract_sky_points Extract sky points

Description

Sample representative sky pixels for use in model fitting or interpolation.

Usage

extract_sky_points(r, bin, g, dist_to_black = 3, method = "grid")

Arguments
r numeric terra::SpatRaster of one layer. Typically the blue band of a canopy
image.
bin logical terra::SpatRaster of one layer. Binary image where TRUE marks candi-
date sky pixels. Typically the output of binarize_with_thr().
g numeric terra::SpatRaster of one layer. Segmentation grid, usually built with

n

sky_grid_segmentation() or chessboard(). Ignored when method = "local_max".

dist_to_black numeric vector of length one or NULL. Minimum distance (pixels) to the nearest
black pixel for a candidate sky pixel to be valid. If NULL, no distance constraint
is applied.

method character vector of length one. Sampling method; either "grid"” (default) or
"local_max".

Details
Two sampling strategies are provided:
"grid"” select one sky point per cell of a segmentation grid (g) as the brightest pixel marked TRUE
in bin, provided the cell’s white pixel count exceeds one fourth of the mean across valid cells.

"local_max" detect local maxima within a fixed 9 x 9 window, restricted to pixels marked TRUE
in bin, after removing patches of connected TRUE pixels that are implausible based on fixed
area/size thresholds. Each detected maximum is taken as a sky point.

Use "grid"” to promote an even, representative spatial distribution (good for model fitting), and
"local_max" to be exhaustive for interpolation.

40 fisheye_to_equidistant

Value

data. frame with columns row and col.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata") &
select_sky_region(z, 0, 88)

g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g,
dist_to_black = 3)
plot(bin)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

End(Not run)

fisheye_to_equidistant
Fisheye to equidistant

Description
Reproject a hemispherical image from fisheye to equidistant projection (also known as polar pro-
jection) to standardize its geometry for subsequent analysis and comparison between images.
Usage

fisheye_to_equidistant(r, z, a, m, radius = NULL, k =1, p =1, rmax = 100)

Arguments

r terra::SpatRaster of one or more layers (e.g., RGB channels or binary masks) in
fisheye projection.

z terra::SpatRaster generated with zenith_image().

a terra::SpatRaster generated with azimuth_image ().

m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.

radius numeric vector of length one. Radius (in pixels) of the reprojected hemispherical

image. Must be an integer value (no decimal part). If NULL (default), it is set to
ncol(r) / 2.

fisheye_to_pano 41

k, p, rmax numeric vector of length one. Parameters passed to 1idR: :knnidw(): number
of neighbors (k), inverse distance weighting exponent (p), and maximum search
radius (rmax) in units of the output resolution.

Details

Pixel values and coordinates are treated as 3D points and reprojected using Cartesian interpolation.
Internally, this function uses 1idR: :knnidw() as interpolation engine, so arguments k, p, and rmax
are passed to it without modification.

Value

terra::SpatRaster with the same number of layers as r, reprojected to equidistant projection with
circular shape and radius given by ‘radius

Examples

Not run:

path <- system.file("external/APC_0836.jpg", package = "rcaiman")
caim <- read_caim(path)

calc_diameter(c(0.801, ©.178, -0.179), 1052, 86.2)

z <- zenith_image(2216, <¢(0.801, 0.178, -0.179))

a <- azimuth_image(z)

zenith_colrow <- c(1063, 771)

caim <- expand_noncircular(caim, z, zenith_colrow)

m <- lis.na(caim$Red) & select_sky_region(z, 0, 86.2)

caim[!m] <- @

m2 <- fisheye_to_equidistant(m, z, a, !is.na(z), radius = 600)
m2 <- binarize_with_thr(m2, ©.5) #to turn it logical
caim2[!m2] <- @

plot(caim)

End(Not run)

fisheye_to_pano Fisheye to panoramic

Description

Reprojects a fisheye (hemispherical) image into a panoramic view using a cylindrical projection.
The output is standardized so that rows correspond to zenith angle bands and columns to azimuthal
sectors.

Usage

fisheye_to_pano(r, z, a, fun = mean, angle_width = 1)

42 fisheye_to_pano

Arguments
r terra::SpatRaster of one or more layers (e.g., RGB channels or binary masks) in
fisheye projection.
z terra::SpatRaster generated with zenith_image ().
a terra::SpatRaster generated with azimuth_image().
fun function taking a numeric/logical vector and returning a single numeric or logi-

cal value (default mean).

angle_width numeric vector of length one. Angle in deg that must divide both 0-360 and
0-90 into an integer number of segments. Retrieve a set of valid values by run-
ning lapply(c(45, 30, 18, 10), function(a) vapply(@:6, function(x) a/2*x,
).

Details

This function computes a cylindrical projection by aggregating pixel values according to their zenith
and azimuth angles. Internally, it creates a segmentation grid with sky_grid_segmentation() and
applies extract_feature() to compute a summary statistic (e.g., mean) of pixel values within
each cell.

Value

terra::SpatRaster with rows representing zenith angle bands and columns representing azimuthal
sectors. The number of layers and names matches that of the input r.

Note

An early version of this function was used in Diaz et al. (2021).

References

Diaz GM, Negri PA, Lencinas JD (2021). “Toward making canopy hemispherical photography
independent of illumination conditions: A deep-learning-based approach.” Agricultural and Forest
Meteorology, 296, 108234. doi:10.1016/j.agrformet.2020.108234.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())

a <- azimuth_image(z)

pano <- fisheye_to_pano(caim, z, a)

plotRGB(pano %>% normalize_minmax() %>% multiply_by(255))

End(Not run)

https://doi.org/10.1016/j.agrformet.2020.108234

fit_cie_model 43

fit_cie_model Fit CIE sky model

Description

Fit the CIE sky model to data sampled from a canopy photograph using general-purpose optimiza-
tion.

Usage

fit_cie_model(
rr,
sun_angles,
custom_sky_coef = NULL,
std_sky_no = NULL,
general_sky_type = NULL,
method = c(”Nelder-Mead”, "BFGS", "CG", "SANN")

)
Arguments

rr list, typically the output of extract_rr(). If generated by other means, it must
contain:
zenith_dn numeric vector of length one.
sky_points data.frame with columns a (azimuth, deg), z (zenith, deg), and

rr (relative radiance).
sun_angles named numeric vector of length two, with components z and a in degrees, e.g.,

c(z=49.3,a=123.1). See estimate_sun_angles() for details.
custom_sky_coef

numeric vector of length five, or numeric matrix with five columns. Custom

starting coefficients for optimization. If not provided, coefficients are initialized

from standard skies.

std_sky_no numeric vector. Standard sky numbers as in cie_table. If not provided, all are
used.

general_sky_type
character vector of length one. Must be "Overcast”, "Clear”, or "Partly
cloudy”. See column general_sky_type in cie_table for details. If not pro-
vided, all sky types are used.

method character vector. Optimization methods passed to stats::optim(). See that
function for supported names.

Details

The method is based on Lang et al. (2010). For best results, the input data should show a linear rela-
tion between digital numbers and the amount of light reaching the sensor. See extract_radiometry()
and read_caim_raw() for details. As a compromise solution, invert_gamma_correction() can
be used.

44 fit_cie_model

Value
List with the following components:

rr The input rr with an added pred column in sky_points, containing predicted values.
opt_result List returned by stats::optim().

coef Numeric vector of length five. CIE model coefficients.

sun_angles Numeric vector of length two. Sun zenith and azimuth (degrees).

method Character string. Optimization method used.

start Numeric vector of length five. Starting parameters.

metric Numeric value. Mean squared deviation as in Gauch et al. (2003).

Background

This function is based on Lang et al. (2010). In theory, the best result would be obtained with
data showing a linear relation between digital numbers and the amount of light reaching the sensor.
See extract_radiometry() and read_caim_raw() for further details. As a compromise solution,
invert_gamma_correction() can be used.

Digitizing sky points with ImageJ

The point selection tool of ‘Imagel’ software can be used to manually digitize points and create a
CSV file from which to read coordinates (see Examples). After digitizing the points on the image,
this is a recommended workflow: 1. Use the dropdown menu Analyze > Measure to open the
Results window. 2. Use File > Save As... to obtain the CSV file.

Use this code to create the input sky_points from ImagelJ data:

sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")

Digitizing sky points with QGIS
To use the QGIS software to manually digitize points, drag and drop the image in an empty project,
create an new vector layer, digitize points manually, save the editions, and close the project.

To create the new vector layer, this is a recommended workflow:

Fo to the dropdown menu Layer > Create Layer > New Geopackage Layer...
Choose "point" in the Geometry type dropdown list

Make sure the CRS is EPSG:7589.

Click on the Toogle Editing icon

Click on the Add Points Feature icon.

kLN

Use this code to create the input sky_points from QGIS data:

sky_points <- terra::vect(path)

sky_points <- terra::extract(caim, sky_points, cells = TRUE)

sky_points <- terra::rowColFromCell(caim, sky_points$cell) %>% as.data.frame()
colnames(sky_points) <- c("row”, "col")

https://imagej.net/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://qgis.org/

fit_cie_model 45

References

Gauch HG, Hwang JTG, Fick GW (2003). “Model evaluation by comparison of model-based pre-
dictions and measured values.” Agronomy Journal, 95(6), 1442—-1446. ISSN 1435-0645, doi:10.2134/
agronj2003.1442.

Lang M, Kuusk A, Méttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20-29. doi:10.1016/j.agrformet.2009.08.001.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

Manual method following Lang et al. (2010)
path <- system.file("external/sky_points.csv”,
package = "rcaiman")
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")
head(sky_points)
plot(caim$Blue)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

x110)

plot(caim$Blue)

sun_angles <- click(c(z, a), 1) %>% as.numeric()

sun_angles <- c(z = 49.5, a = 27.4) #taken with above lines then hardcoded

sun_row_col <- row_col_from_zenith_azimuth(z, a,
sun_angles["z"],
sun_angles["a"])

points(sun_row_col[2], nrow(caim) - sun_row_col[1],

col = "yellow”, pch = 8, cex = 3)

rr <- extract_rr(caim$Blue, z, a, sky_points)
set.seed(7)
model <- fit_cie_model(rr, sun_angles,

general_sky_type = "Clear”)
plot(modelrrsky_points$rr, model$rrsky_pointspred)
abline(0,1)
Im(modelrrsky_points$pred~model$rrsky_pointsrr) %>% summary()

sky <- cie_image(z, a, model$sun_angles, model$coef) * modelrrzenith_dn

plot(sky)
ratio <- caim$Blue/sky

https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.1016/j.agrformet.2009.08.001

46 fit_coneshaped_model

plot(ratio)
plot(ratio > 1.05)
plot(ratio > 1.15)

End(Not run)

fit_coneshaped_model Fit cone-shaped model

Description

Fit a polynomial model to predict relative radiance from spherical coordinates using data sampled
from a canopy photograph.

Usage
fit_coneshaped_model (sky_points, method = "zenith_n_azimuth”)
Arguments
sky_points data.frame returned by extract_rr(). If it is generated by other means, it
must have columns row, col, z, a, and rr.
method character. Model type to fit:
"zenith_only” Quadratic polynomial in zenith angle.
"zenith_n_azimuth” Quadratic polynomial in zenith plus sinusoidal terms in
azimuth.
Details

This model requires only sky_points, making it useful in workflows where sun position cannot be
reliably estimated, such as in apply_by_direction(). Otherwise, fit_cie_model() is a better
choice.

Depending on method, it can fit:

A zenith-only quadratic model
sDN = a + b0 + ct?

A zenith-plus-azimuth model, adding sinusoidal terms
sDN = a + b0 + ch* + dsin(p) + e cos(¢)

See Diaz and Lencinas (2018) for details on the full model.

Value
List with the following components:

fun Function taking zenith and azimuth (degrees) and returning predicted relative radiance.
model 1m object fitted by stats: :1m().

Returns NULL (with a warning) if the number of input points is fewer than 20.

fit_trend_surface 47

References

Diaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204—1216. doi:10.1139/cjfr20180006.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata”) &
select_sky_region(z, 0, 88)

TRUE)
3)

g <- sky_grid_segmentation(z, a, 10, first_ring_different
sky_points <- extract_sky_points(r, bin, g, dist_to_black
plot(bin)

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
rr <- extract_rr(r, z, a, sky_points)

model <- fit_coneshaped_model(rr$sky_points)
summary (model$model)

sky_cs <- model$fun(z, a) * rr$zenith_dn
plot(sky_cs)

z_mini <- zenith_image(50@, lens())

sky_cs <- model$fun(z_mini, azimuth_image(z_mini))
persp(sky_cs, theta = 90, phi = 20)

End(Not run)

fit_trend_surface Fit a trend surface to sky digital numbers

Description

Fits a trend surface to sky digital numbers using spatial: :surf.1ls() asthe computational workhorse.

Usage

fit_trend_surface(sky_points, r, np = 6, col_id = "dn", extrapolate = FALSE)

https://doi.org/10.1139/cjfr-2018-0006

48 fit_trend_surface
Arguments

sky_points data.frame with columns row, col, and one additional numeric column with
values to interpolate. Typically returned by extract_rr() or extract_dn().

r numeric terra::SpatRaster with one layer. Image from which sky_points were
derived, or another raster with the same number of rows and columns. Used
only as geometric template; cell values are ignored.

np degree of polynomial surface

col_id numeric or character vector of length one. The name or position of the column
in sky_points containing the values to interpolate.

extrapolate logical vector of length one. If TRUE, predictions are extrapolated to the entire
extent of r; otherwise, predictions are limited to the convex hull of the input sky
points.

Details

This function models the variation in digital numbers across the sky dome by fitting a polynomial
surface in Cartesian space. It is intended to capture smooth large-scale gradients and is more effec-
tive when called via apply_by_direction().

Value

List with named elements:

raster terra::SpatRaster containing the fitted surface.

model object of class trls returned by spatial::surf.1ls().

r2 numeric value giving the coefficient of determination (R?) of the fit.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

Not run:

caim <- read_caim()
z <- zenith_image(ncol(caim), lens())

a <- azimuth_image(z)
m <- lis.na(z)
r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata”) &
select_sky_region(z, 0, 88)

g <- sky_grid_segmentation(z, a, 10, first_ring_different = TRUE)
sky_points <- extract_sky_points(r, bin, g, dist_to_black = 3)
plot(bin)

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
sky_points <- extract_dn(r, sky_points, use_window = TRUE)

grow_black 49

sky_s <- fit_trend_surface(sky_points, r, np = 4, col_id = 3,
extrapolate = TRUE)

plot(sky_s$raster)
binarize_with_thr(r/sky_s$raster, 0.5) %>% plot()

sky_s <- fit_trend_surface(sky_points, r, np = 6, col_id
extrapolate = FALSE)

n
w

plot(sky_s$raster)
binarize_with_thr(r/sky_s$raster, 0.5) %>% plot()

End(Not run)

grow_black Grow black regions in a binary mask

Description

Grow black pixels in a binary mask using a kernel of user-defined size. Useful to reduce errors
associated with inter-class borders.

Usage
grow_black(bin, dist_to_black)

Arguments

bin logical terra::SpatRaster with one layer. A binarized hemispherical image. See
binarize_with_thr() for details.

dist_to_black numeric vector of length one. Buffer distance (pixels) used to expand black
regions.

Details

Expands the regions with value FALSE (typically rendered as black) in a binary image by apply-
ing a square-shaped buffer. Any white pixels (value TRUE) within a distance equal to or less than
dist_to_black from a black pixel will be turned black.

Value

Logical terra::SpatRaster with the same dimensions as bin. Compared to the input bin, black
regions (FALSE) have been expanded by the specified buffer distance.

Examples

Not run:

r <- read_caim()

bin <- binarize_with_thr(r$Blue, thr_isodata(r$Blue[]))
plot(bin)

bin <- grow_black(bin, 11)

50 hsp_compat

plot(bin)

End(Not run)

hsp_compat HSP compatibility functions

Description

Read and write legacy files from HSP (HemiSPherical Project Manager) projects to interoperate
with existing workflows. Intended for legacy support; not required when working fully within
rcaiman.

Usage

hsp_read_manual_input(path_to_HSP_project, img_name)
hsp_read_opt_sky_coef (path_to_HSP_project, img_name)
hsp_write_sky_points(sky_points, path_to_HSP_project, img_name)

hsp_write_sun_coord(sun_row_col, path_to_HSP_project, img_name)

Arguments

path_to_HSP_project
character vector of length one. Path to the HSP project folder (e.g., "C: /Users/johndoe/Documents/HSP

img_name character vector of length one (e.g., "DSCN6342.pgm" or "DSCN6342"). See
About HSP software.
sky_points data.frame with columns row and col.
sun_row_col numeric vector of length two. Raster coordinates (row, column) of the solar
disk.
Value

See Functions

About HSP software

HSP (introduced in (Lang et al. 2013), based on the method in (Lang et al. 2010)) runs exclusively
on Windows. HSP stores pre-processed images as PGM files in the manipulate subfolder of each
project (itself inside the projects folder).

hsp_compat 51

Functions

hsp_read_manual_input() read sky marks and sun position defined manually within an HSP
project; returns a named list with components weight, max_points, angle, point_radius,
sun_row_col, sky_points, and zenith_dn.

hsp_read_opt_sky_coef () read optimized CIE sky coefficients from an HSP project; returns a
numeric vector of length five.

hsp_write_sky_points() write a file with sky point coordinates compatible with HSP; creates a
file on disk.

hsp_write_sun_coord() write a file with solar disk coordinates compatible with HSP; creates a
file on disk.

References

Lang M, Kodar A, Arumide T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13-27. doi:10.2478/fsmu20130008.

Lang M, Kuusk A, Méttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20-29. doi:10.1016/j.agrformet.2009.08.001.

Examples

Not run:
NOTE: assumes the working directory is the HSP project folder (e.g., an RStudio project).

From HSP to R in order to compare —------—---—=———————————————————————————
r <- read_caim("manipulate/IMG_1013.pgm")
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
manual_input <- read_manual_input(”."”, "IMG_1013")
sun_row_col <- manual_input$sun_row_col
sun_angles <- zenith_azimuth_from_row_col(
z, a,
sun_row_col[1],
sun_row_col[2]
)

sun_angles <- as.vector(sun_angles)

sky_points <- manual_input$sky_points
rr <- extract_rr(r, z, a, sky_points)
model <- fit_cie_model(rr, sun_angles)
sky <- cie_image(

z, a,

model$sun_angles,

model$coef
) * modelrrzenith_dn
plot(r / sky)

r <- read_caim("manipulate/IMG_1013.pgm")

https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.1016/j.agrformet.2009.08.001

52 interpolate_planar

sky_coef <- read_opt_sky_coef(".", "IMG_1013")
sky_m <- cie_image(z, a, sun_angles, sky_coef)
sky_m <- cie_sky_manual * manual_input$zenith_dn
plot(r / sky_m)

From R to HSP ---------—--——--—
<- read_caim("manipulate/IMG_1014.pgm")
zenith_image(ncol(r), lens())
<- azimuth_image(z)
<- lis.na(z)
g <- sky_grid_segmentation(z, a, 10)
bin <- binarize_with_thr(caim$Blue, thr_isodata(caim$Blue[m]))
bin <- select_sky_region(z, @, 85) & bin

S o N 5 H
N
1

sun_angles <- estimate_sun_angles(r, z, a, bin, g)
sun_row_col <- row_col_from_zenith_azimuth(
z, a,
sun_angles["z"],
sun_angles["a"]
) %>% as.numeric()
write_sun_coord(sun_row_col, "."”, "IMG_1014")

sky_points <- extract_sky_points(r, bin, g)
write_sky_points(sky_points, "."”, "IMG_1014")

End(Not run)

interpolate_planar Interpolate in planar space

Description
Interpolate values from canopy photographs using inverse distance weighting (IDW) with k-nearest
neighbors in image (planar) coordinates. A radius limits neighbor search.

Usage

interpolate_planar(sky_points, r, k = 3, p = 2, rmax = 200, col_id = "dn")

Arguments

sky_points data.frame with columns row, col, and one additional numeric column with
values to interpolate. Typically returned by extract_rr() or extract_dn().

r numeric terra::SpatRaster with one layer. Image from which sky_points were
derived, or another raster with the same number of rows and columns. Used
only as geometric template; cell values are ignored.

k, p, rmax numeric vector of length one. Parameters passed to 1idR: :knnidw(): number

of neighbors (k), inverse distance weighting exponent (p), and maximum search
radius (rmax) in units of the output resolution.

interpolate_planar 53

col_id numeric or character vector of length one. The name or position of the column
in sky_points containing the values to interpolate.

Details

Delegates interpolation to 1idR: :knnidw(), passing k, p, and rmax unchanged. Defaults follow

Lang et al. (2013). Note that rmax is given in pixels but intended to approximate 15-20 deg in

angular terms. Therefore, this value needs fine-tuning based on image resolution and lens pro-

jection. For best results, the interpolated quantity should be linearly related to scene radiance; see
extract_radiometry() and read_caim_raw(). For JPEG images, consider invert_gamma_correction()
to reverse gamma encoding.

Value

Numeric terra::SpatRaster with one layer and the same geometry as r.

Note

No consistency checks are performed to ensure that sky_points and r are geometrically compati-
ble. Incorrect combinations may lead to invalid outputs.

References

Lang M, Kodar A, Arumie T (2013). “Restoration of above canopy reference hemispherical image
from below canopy measurements for plant area index estimation in forests.” Forestry Studies,
59(1), 13-27. doi:10.2478/fsmu20130008.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata") &
select_sky_region(z, 0, 88)

g <- sky_grid_segmentation(z, a, 10)

sky_points <- extract_sky_points(r, bin, g, dist_to_black = 3)
plot(bin)

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
sky_points <- extract_dn(r, sky_points)

sky <- interpolate_planar(sky_points, r, col_id = 3)
plot(sky)
plot(r/sky)

End(Not run)

https://doi.org/10.2478/fsmu-2013-0008

54

interpolate_spherical

interpolate_spherical Interpolate in spherical space

Description

Interpolate values from canopy photographs using inverse distance weighting (IDW) with k-nearest
neighbors, computing distances in spherical coordinates that map the sky vault. Optionally blend
with a model surface to fill voids.

filling_source = NULL,

20,

data.frame returned by extract_rr(). If generated by other means, it must
contain columns row, col, z, a, and rr, where the first four define geometry
(degrees) and rr is the value to interpolate.

terra::SpatRaster generated with zenith_image().

Usage
interpolate_spherical(
sky_points,
z,
a,
w=1,
k = 3,
p =2,
angular_radius
rule = "any”,
size = 50
)
Arguments
sky_points
z
a

filling_source

k

p
angular_radius

rule

size

terra::SpatRaster generated with azimuth_image ().

optional numeric terra::SpatRaster with one layer. Surface used to complement
rr when neighbors are insufficient (e.g., output of fit_cie_model()). If NULL
(default), no filling is applied.

numeric vector of length one. Weight assigned to filling_source in the blend
with local estimates (see Eq. 6 in Lang et al. (2010)).

numeric vector of length one. Number of neighbors.

numeric vector of length one. Inverse distance weighting exponent.

numeric vector of length one. The maximum radius for searching k-nearest
neighbors (KNN) in degrees.

character vector of length one. Either "any” or "all”. With "any", pixels
within angular_radius of at least one sample are interpolated. With "all",
pixels are interpolated only if the k nearest neighbors lie within angular_radius.
If k = 1, both are equivalent.

numeric vector of length one. Number of rows and columns of the low-resolution
grid used before resampling to full resolution.

interpolate_spherical 55

Details

Distances are great-circle distances on the sky vault. When filling_source is provided, local
IDW estimates are blended with that surface following Eq. 6 in Lang et al. (2010). For efficiency,
interpolation runs on a temporary low-resolution grid of size size.

Value

Numeric terra::SpatRaster with one layer of interpolated values and the geometry of z.

Note

This function assumes that sky_points and the terra::SpatRaster inputs are spatially aligned and
share the same geometry. No checks are performed to enforce this.

References

Lang M, Kuusk A, Méttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20-29. doi:10.1016/j.agrformet.2009.08.001.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

Manual method following Lang et al. (2010)
path <- system.file("external/sky_points.csv”,
package = "rcaiman")
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")
head(sky_points)
plot(caim$Blue)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

x110)

plot(caim$Blue)

sun_angles <- click(c(z, a), 1) %>% as.numeric()

sun_angles <- c(z = 49.5, a = 27.4) #taken with above lines then hardcoded

sun_row_col <- row_col_from_zenith_azimuth(z, a,
sun_angles["z"],
sun_angles["a"])

points(sun_row_col[2], nrow(caim) - sun_row_col[1],

col = "yellow”, pch = 8, cex = 3)

rr <- extract_rr(caim$Blue, z, a, sky_points)

set.seed(7)

https://doi.org/10.1016/j.agrformet.2009.08.001

56 invert_gamma_correction

model <- fit_cie_model(rr, sun_angles,
general_sky_type = "Clear")

sky_cie <- cie_image(z, a, model$sun_angles, model$coef)

sky_rr <- interpolate_spherical(rr$sky_points, z, a,
filling_source = sky_cie,

w=1,

k =10,

p=2,
angular_radius = 20,
rule = "any”,

size = 50)

plot(r/sky_rr/rr$zenith_dn)

End(Not run)

invert_gamma_correction
Gamma back correction of JPEG images

Description

Approximates the inversion of the gamma encoding applied to JPEG images.

Usage

invert_gamma_correction(dn, gamma = 2.2)

Arguments
dn numeric vector or terra::SpatRaster. Digital numbers from a JPEG file (range
0-255, as per standard 8-bit encoding).
gamma numeric vector of length one. Exponent applied in the inverse gamma correction
(typically 2.2 for sSRGB).
Details

Digital cameras typically encode images using the sSRGB color space, which applies a non-linear
transformation—commonly referred to as gamma correction—to the sensor’s linear luminance re-
sponse. This function applies a power transformation to approximate the inverse of that encoding,
restoring a response closer to linear.

Value

Same properties as dn, with values adjusted by inverse gamma correction and rescaled to the range
[0,1].

lens 57

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

Not run:

path <- system.file("external/APC_0836.jpg", package = "rcaiman")
caim <- read_caim(path)

z <- zenith_image(2132, 1lens("0lloclip”))

a <- azimuth_image(z)

zenith_colrow <- c(1063, 771)

caim <- expand_noncircular(caim, z, zenith_colrow)

m <- lis.na(caim$Red) & !is.na(z)

caim[!m] <- @

bin <- binarize_with_thr(caim$Blue, thr_isodata(caim$Blue[m]))
display_caim(caim$Blue, bin)

caim <- invert_gamma_correction(caim, 2.2)

End(Not run)

lens Access the lens database

Description

Retrieve projection coefficients and field-of-view (FOV, deg) for known lenses. Coefficients expect
zenith angle in radians and return relative radius.

Usage
lens(type = "equidistant”, return = "coef")
Arguments
type Character vector of length one. Lens identifier. See Details.
return Character vector of length one. Either "coef”(default) or "fov"”. Controls
whether to return projection coefficients or maximum FOV.
Details

In upward-looking leveled hemispherical photography, the zenith corresponds to the center of a
circular image whose perimeter represents the horizon, assuming a lens with a 180° field of view.
The relative radius is the radial distance to a given point, expressed as a fraction of the maximum
radius (i.e., the horizon). The equidistant projection model, also called polar projection, is the

58 lens

standard reference model, characterized by a linear relationship between zenith angle and relative
radius.

Real lenses deviate from ideal projections. Following Hemisfer software, this package models
deviations with polynomial functions. All angular values are in radians.

Currently available lenses:

"equidistant' Ideal equidistant projection (Schneider et al. 2009).

""Nikkor_10.5mm" AF DX Fisheye Nikkor 10.5mm {/2.8G ED (Pekin and Macfarlane 2009).
"Nikon_FCE9" Nikon FC-E9 converter (Diaz et al. 2024).

"Olloclip" Auxiliary lens for mobile devices manufactured by Olloclip (Diaz et al. 2024).
"Nikkor_8mm'" AF-S Fisheye Nikkor 8—15mm f/3.5-4.5E ED (Diaz et al. 2024).

See calibrate_lens() for fitting new projection functions.

Value
Numeric vector. Depends on return:

"coef" Polynomial coefficients of the projection function (relative radius as a function of theta,
radians).

"fov'' numeric vector of length one. Maximum field of view (deg).

References

Diaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298-1320.
doi:10.3390/rs1041298.

Schneider D, Schwalbe E, Maas H (2009). “Validation of geometric models for fisheye lenses.” IS-
PRS Journal of Photogrammetry and Remote Sensing, 64(3),259-266. doi:10.1016/].isprsjprs.2009.01.001.

Examples

lens("Nikon_FCE9")
lens(”"Nikon_FCE9", return = "fov")

.fp <= function(theta, lens_coef) {

x <= lens_coef[1:5]

x[is.na(x)] <- @

for (i in 1:5) assign(letters[i], x[i])

a x theta + b x theta”2 + ¢ * theta”3 + d * theta*4 + e * theta”5
3

theta <- seq(@, pi/2, pi/180)
plot(theta, .fp(theta, lens()), type = "1", 1ty = 2,

https://www.schleppi.ch/patrick/hemisfer/
https://doi.org/10.1016/j.agrformet.2024.110020
https://doi.org/10.3390/rs1041298
https://doi.org/10.1016/j.isprsjprs.2009.01.001

normalize_minmax 59

ylab = "relative radius”)
lines(theta, .fp(theta, lens(”Nikon_FCE9")))

normalize_minmax Normalize data using min-max rescaling

Description

Rescale numeric or raster data from an expected range to the range [0, 1].

Usage

normalize_minmax(r, mn = NULL, mx = NULL, clip = FALSE)

Arguments
r numeric terra::SpatRaster or numeric vector. Input data.
mn numeric vector of length one or NULL. Minimum expected value. If NULL (de-
fault), uses the minimum of r.
mx numeric vector of length one or NULL. Maximum expected value. If NULL (de-
fault), uses the maximum of r.
clip logical vector of length one. If TRUE, clip the output to [0, 1] after rescaling. If
FALSE, values greater than mx are scaled proportionally to values above 1, and
values less than mn to values below 0.
Value

Same properties as r, with values rescaled to the range [0, 1] if mn and mx match the range of r or
extend beyond it. If clip = TRUE, values will be within [0, 1] even if this implies data loss.

Examples

normalize_minmax(read_caim())

60 ootb_bin

ootb_bin Out-of-the-box reliable binarized image

Description

Robust binarization without parameter tuning.

Usage
ootb_bin(caim, z, a, m, parallel = TRUE)

Arguments
caim numeric terra::SpatRaster with three layers named "Red”, "Green”, and "Blue”.
Digital numbers should be linearly related to radiance. See read_caim_raw()
for details.
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().
m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.
parallel logical vector of length one. If TRUE, operations are executed in parallel.
Details

Runs a predefined pipeline that incrementally refines a binary sky mask by combining gradient-
based enhancement, local thresholding, polar segmentation, and a spectral index sensitive to sunlit
canopy.

1. Enhancement. Compute complementary gradients with complementary_gradients() and
build an enhancer that mixes the strongest complementary response with the blue band: mem <-
mean(normalize_minmax(max(yellow_blue, red_cyan)), normalize_minmax(Blue*(1/2.2))).
Gamma correction (see invert_gamma_correction()) is applied to the blue band to reduce
sky brightness variability.

2. Local thresholding. Apply apply_by_direction() on mem with method = "thr_isodata”
to obtain an initial binary mask. Local thresholding is required because background non-
uniformity remains in the enhanced image.

3. Cleanup. Remove isolated pixels and apply a one-pixel binary dilation. This compensates
small artifacts produced by band misalignment resulting from the radiometric-first policy of
read_caim_raw().

4. Polar quadtree segmentation. Segment this preclassification of sky and non-sky pixels with
polar_qtree() parameterized to yield circular trapezoids never smaller than 3 x 3 degrees
and to minimize segments with mixed classes.

5. Object-based image analysis. Keep segments that contain between 10 and 90 percent of sky
pixels. For each kept segment, estimate a local sky reference as the maximum blue value, use
it to normalize per segment (ratio <- Blue / sky_segment_max), interpret the normalization
as the degree of membership to the sky class, and then defuzzify with a fixed threshold @. 5.

ootb_sky_above 61

6. Blue—Red Index (BRI). Compute

B—-R

B+R

where B and R are blue and red digital numbers. BRI decreases on sunlit canopy because
direct sunlight is warmer than diffuse skylight. Use a scene-adaptive threshold given by the
median BRI over the current non-sky region to flip misclassified sky pixels to non-sky.

BRI =

7. Zenith mask. Apply the final zenith-angle gate (e.g., keep 6, < 88°).

Value

Logical terra::SpatRaster (TRUE for sky, FALSE for non-sky) with the same number of rows and
columns as caim.

Note

This function is part of a paper under preparation.

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

bin <- ootb_bin(caim, z, a, m)
plot(bin)

End(Not run)

ootb_sky_above Out-of-the-box above-canopy sky

Description

Generate an above-canopy sky brightness map without manual tuning.

Usage

ootb_sky_above(sky_points, z, a, sky_cie, size = 100)

Arguments
sky_points data.frame returned by extract_rr(). If generated by other means, it must
contain columns row, col, z, a, and rr, where the first four define geometry
(degrees) and rr is the value to interpolate.
z terra::SpatRaster generated with zenith_image().

a terra::SpatRaster generated with azimuth_image ().

62 ootb_sky_above

sky_cie list. Output of ootb_sky_cie().

size numeric vector of length one. Number of rows and columns of the low-resolution
grid used before resampling to full resolution.

Details

Interpolates sky brightness with IDW and k-nearest neighbors in spherical space via interpolate_spherical(),
blending observations with a fitted sky model. Blending and IDW parameters are derived from

sky_cie validation metrics, and the result is scaled by the modeled zenith value to yield digital

numbers.

Value

Named list with:

dn_raster numeric terra::SpatRaster with interpolated above-canopy sky brightness in digital num-
bers.

w numeric. Weight assigned to the model-based filling source.

k integer. Number of nearest neighbors used by IDW.

p numeric. IDW power parameter.

Note

This function is part of a paper under preparation.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

path <- system.file("external/example.txt"”, package = "rcaiman")
sky_cie <- read_sky_cie(gsub(".txt", "", path), caim$Blue, z, a)

sky_points <- sky_cie$model$rr$sky_points

sky_above <- ootb_sky_above(sky_points, z, a, sky_cie)
plot(sky_above$dn_raster)
plot(caim$Blue/sky_above$dn_raster)

End(Not run)

ootb_sky_cie 63

ootb_sky_cie Out-of-the-box CIE sky model and raster

Description

Fit and validate a CIE general sky model from a canopy photograph without manual parameter
tuning, and return the predicted raster.

Usage

ootb_sky_cie(

bin,

gs,

min_spherical_dist = seq(@, 12, 3),

method = c(”"Nelder-Mead”, "BFGS", "CG", "SANN"),
custom_sky_coef = NULL,

parallel = TRUE

)
Arguments

r numeric terra::SpatRaster of one layer. Typically, the blue band of a a canopy
photograph. Digital numbers should be linearly related to radiance. See read_caim_raw()
for details.

z terra::SpatRaster generated with zenith_image().

a terra::SpatRaster generated with azimuth_image ().

m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.

bin logical terra::SpatRaster with one layer. A binarized hemispherical image. See
binarize_with_thr() for details.

gs list where each element is the output of sky_grid_segmentation(). See

Examples for guidance.
min_spherical_dist

numeric vector. Values passed to rem_nearby_points().
method character vector. Optimization methods for fit_cie_model().

custom_sky_coef
optional numeric vector of length five. If NULL (default), the 15 standard CIE
skies are tested as starting conditions. Use this to avoid recomputing the initial
step (depending only on method) when testing other inputs.

parallel logical vector of length one. If TRUE, operations are executed in parallel.

64 ootb_sky_cie

Details

Runs a full pipeline to fit a CIE sky model to radiance from a canopy image:

1. apreliminary estimate of sky digital numbers is attempted using the two-corner method aiming
to start with a comprehensive sampling of the sky vault (see method = "detect_bg_dn" of
apply_by_direction()).

2. sky point extraction is performed with extract_sky_points(), using information from a
binary mask (bin) and post-filtering with rem_nearby_points() and rem_outliers().

3. relative radiance is computed with extract_rr () and fitted to CIE sky models using fit_cie_model (),
selecting the best among different initial conditions and optimization methods.

4. model validation is performed via validate_cie_model().

5. raster prediction with cie_image().

Value

List with:

rr_raster numeric terra::SpatRaster. Predicted relative radiance.

model list returned by fit_cie_model(). The optimal fit.

model_validation list returned by validate_cie_model().

dist_to_black Value of dist_to_black used in extract_sky_points() for the optimal fit.
use_window logical. Whether a window was used in extract_rr() for the optimal fit.

min_spherical_dist Value of min_dist used in rem_nearby_points(space = "spherical”)
for the optimal fit.

sky_points data.frame with columns row and col. Locations of sky points.
sun_row_col data.frame with the estimated sun-disk position in image coordinates.
g Sky grid used for the optimal fit (as returned by sky_grid_segmentation()).
tested_grids character vector describing the tested grid configurations.

tested_distances character vector of tested min_dist values in rem_nearby_points(space =
"spherical”).

tested_methods character vector of optimization methods tested in fit_cie_model().
optimal_start starting parameters selected after testing the 15 CIE skies.

model_up model fitted to relative radiance detected with the two-corner method, if that step suc-
ceeded; otherwise NULL.

Note

This function is part of a paper under preparation.

optim_dist_to_black

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

bin <- ootb_bin(caim, z, a, m, TRUE)

set.seed(7)

gs <- list(
#high res
sky_grid_segmentation(z, a, 2.25, first_ring_different = TRUE),
sky_grid_segmentation(z, a, 2.8125, first_ring_different = TRUE),
#medium res
sky_grid_segmentation(z, a, 9, first_ring_different = TRUE),
sky_grid_segmentation(z, a, 10, first_ring_different = TRUE),
#low res
sky_grid_segmentation(z, a, 15, first_ring_different = FALSE),
sky_grid_segmentation(z, a, 18, first_ring_different = FALSE)

)

sky_cie <- ootb_sky_cie(r, z, a, m, bin, gs,
method = c("Nelder-Mead”, "BFGS", "CG", "SANN"),
min_spherical_dist = seq(@, 12, 3),
parallel = TRUE)

sky_cie$rr_raster

plot(sky_cie$rr_raster)

sky_cie$model_validation$rmse

plot(sky_cie$model_validation$pred, sky_cie$model_validation$obs)
abline(0,1)

ratio <- r/sky_cierr_raster/sky_ciemodelrrzenith_dn
plot(ratio)

plot(select_sky_region(ratio, 0.95, 1.05))
plot(select_sky_region(ratio, 1.15, max(ratio[], na.rm = TRUE)))

plot(bin)

points(sky_ciesky_pointscol,
nrow(caim) - sky_ciesky_pointsrow, col = 2, pch = 10)

End(Not run)

optim_dist_to_black Optimize minimum distance to black pixels

66 optim_dist_to_black

Description
Estimate an optimal buffer (dist_to_black) to keep sampled sky points away from candidate
canopy pixels (black pixels).

Usage

optim_dist_to_black(r, z, a, m, bin, g)

Arguments
r numeric terra::SpatRaster of one layer. Typically the blue band of a canopy
image.
z terra::SpatRaster generated with zenith_image ().
a terra::SpatRaster generated with azimuth_image().
m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.
bin logical terra::SpatRaster of one layer. Binary image where TRUE marks candi-
date sky pixels. Typically the output of binarize_with_thr().
g numeric terra::SpatRaster of one layer. Segmentation grid, usually built with
sky_grid_segmentation() or chessboard(). Ignored when method = "local_max".
Details

The heuristic seeks the largest buffer that still yields uniform angular coverage. It iteratively de-
creases dist_to_black while monitoring the percentage of 30 deg sky-grid cells covered by sam-
pled points. If coverage is low, the buffer is relaxed (and may be removed). This balances border
avoidance with representativeness across the sky vault.

Value

numeric vector of length one to be passed as dist_to_black to extract_sky_points(), or NULL
if no buffer is advised.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

m <- lis.na(z)

r <- caim$Blue

bin <- binarize_by_region(r, ring_segmentation(z, 15), "thr_isodata") &
select_sky_region(z, 0, 88)
g <- sky_grid_segmentation(z, a, 10, first_ring_different = TRUE)

dist_to_black <- optim_dist_to_black(r, z, a, m, bin, g)
dist_to_black

optim_sun_angles 67

bin <- grow_black(bin, 11)

plot(bin)

dist_to_black <- optim_dist_to_black(r, z, a, m, bin, g)
dist_to_black

End(Not run)

optim_sun_angles Optimize sun angular coordinates

Description
Refine the solar position in a fitted CIE sky model by optimizing zenith and azimuth to best match
observed relative radiance.

Usage

optim_sun_angles(model, method = c(”"Nelder-Mead", "BFGS", "CG", "SANN"))

Arguments
model list returned by fit_cie_model().
method character vector. One or more optimization methods supported by stats: :optim().
Each is applied independently.
Details

Evaluates one or more methods from stats::optim() starting at model$sun_angles. After each
optimization the model is re-fitted and the process repeats until the change in solar position is < 1
deg. The best result across methods is kept.

Value
List like model, potentially with updated sun_angles and metric, and a new method_sun indicat-
ing the best optimization method. If no improvement is found, method_sun is NULL.

Note
The objective function penalizes solutions that move the sun position by more than 10 deg from the

initial estimate to discourage unrealistic shifts.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

See fit_cie_model() for details on below file

68 paint_with_mask
path <- system.file("external/sky_points.csv"”,
package = "rcaiman”
sky_points <- read.csv(path)
sky_points <- sky_points[c("Y", "X")]
colnames(sky_points) <- c("row”, "col")
sun_angles <- c(z = 39.5, a = 17.4)
rr <- extract_rr(caim$Blue, z, a, sky_points)
set.seed(7)
model <- fit_cie_model(rr, sun_angles, general_sky_type = "Clear")
print(model$sun_angles)
print(model$metric)
plot(modelrrsky_points$rr, model$rrsky_pointspred)
abline(0,1)
Im(modelrrsky_points$pred~model$rrsky_pointsrr) %>% summary()
model <- optim_sun_angles(model)
print(model$sun_angles)
print(model$metric)
model$method_sun
End(Not run)
paint_with_mask Paint with mask
Description
Paint image pixels inside or outside a logical mask with a solid color.
Usage
paint_with_mask(r, m, color = "red"”, where = "outside")
Arguments
r terra::SpatRaster. The image. Values should be normalized, see normalize_minmax().
Only images with one or three layers are supported.
m logical terra::SpatRaster with one layer. A binary mask with TRUE for selected
pixels.
color character vector of length one or numeric vector of length three. Fill color. If
character, it is converted to RGB automatically. If numeric, values must be in
range [0, 1].
where character vector of length one Region to paint relative to m. Either "outside"

(default) or "inside".

polar_gtree 69

Value

numeric terra::SpatRaster with three layers and the geometry of r. Equal to r, but with pixels in the
selected region painted with color. Single-layer inputs are replicated to allow color painting.

Examples

Not run:

r <- read_caim()

z <- zenith_image(ncol(r), lens())

a <- azimuth_image(z)

m <- select_sky_region(z, 20, 70) & select_sky_region(a, 90, 180)

masked_caim <- paint_with_mask(normalize_minmax(r), m)
plotRGB(masked_caim * 255)

masked_bin <- paint_with_mask(binarize_with_thr(r$Blue, 125), m)
plotRGB(masked_bin * 255)

r <- normalize_minmax(r)

paint_with_mask(r, m, color = c(0.2, 0.2, 0.2)) # vector
paint_with_mask(r, m, color = "blue") # name
paint_with_mask(r, m, color = "#0@0FF00") # hexadecimal

End(Not run)

polar_qgtree Generate polar quadtree segmentation

Description
Segment a hemispherical image into large circular trapezoids and recursively split them into four
trapezoids of equal angular size whenever brightness heterogeneity exceeds a predefined threshold.
Usage

polar_qtree(r, z, a, scale_parameter, angle_width = 30, max_splittings = 6)

Arguments
r numeric terra::SpatRaster. One or more layers used to drive heterogeneity.
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().

scale_parameter
numeric vector of length one. Threshold on delta controlling splits (see De-
tails).

70 read_bin

angle_width numeric vector of length one. Angle in deg that must divide both 0-360 and
0-90 into an integer number of segments. Retrieve a set of valid values by run-
ning lapply(c(45, 30, 18, 10), function(a) vapply(@:6, function(x) a/2"x,
).

max_splittings numeric vector of length one. Maximum recursion depth.

Details

A circular trapezoid, hereafter referred to as a cell, is the intersection of a ring (zenith-angle band)
and a sector (azimuth-angle band). Heterogeneity within a cell is measured as the standard deviation
of pixel values (a first-order texture metric). The change in heterogeneity due to splitting is delta,
defined as the sum of the standard deviations of the four subcells minus the standard deviation of the
parent cell. A split is kept where delta > scale_parameter. For multi-layer r, delta is computed
per layer and averaged to decide splits. Angular resolution at level i is angle_width / 2*i.

Value

Single-layer terra::SpatRaster with integer values and the same number of rows and columns as r.

Examples

Not run:

Find large patches of white --------------————--—mmmm
caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())

a <- azimuth_image(z)

bin <- binarize_with_thr(r, thr_isodata(r[]))
plot(bin)

seg <- polar_qgtree(bin, z, a, @, 30, 3)
plot(extract_feature(bin, seg) == 1)

End(Not run)

read_bin Write and read binarized images

Description

Wrapper functions around terra: :rast() to read and write binary masks.

Usage
read_bin(path)

write_bin(bin, path)

read_caim 71

Arguments
path character vector of length one. File path to read or write. See examples.
bin logical terra::SpatRaster with a single layer.

Details

write_bin() multiplies the input logical raster by 255 and writes the result as a GeoTIFF (GTiff)
with datatype INT1U. Both write_bin() and read_bin() set the raster extent to terra::ext(o,
ncol(r), @, nrow(r)) and the CRS to EPSG:7589.

Value

See Functions

Functions

write_bin Write a one-layer logical terra::SpatRaster to disk as a GeoTIFF (GTiff, INT1U). No
return value.

read_bin Read a file with values 255 and/or @, such as the one produced by write_bin (see
Details), and return a logical terra::SpatRaster (TRUE for 255, FALSE for 0).

See Also

read_caim(), write_caim().

Examples

Not run:

z <- zenith_image (1000, lens())

m <- lis.na(z)

my_file <- file.path(tempdir(), "mask.tif")
write_bin(m, my_file)

m_from_disk <- read_bin(my_file)

plot(m - m_from_disk)

End(Not run)

read_caim Read a canopy image from a file

Description

Reads a born-digital image (typically RGB-JPEG or RGB-TIFF) using terra: :rast() and returns
a terra::SpatRaster object. Optionally, it can extract a rectangular region of interest (ROI) specified
by the user.

72 read_caim

Usage

read_caim(path = NULL, upper_left = NULL, width = NULL, height = NULL)

Arguments
path character vector of length one. Path to an image file, including extension. If
NULL, an example image is returned.
upper_left numeric vector of length two. Pixel coordinates of the upper-left corner of the

ROI, in the format c(column, row).

width, height numeric vector of length one. Size (in pixels) of the rectangular ROI to read.

Details

This function is intended for importing color hemispherical photographs, such as those obtained
with digital cameras equipped with fisheye lenses. For raw image files (e.g., NEF, CR2), see
read_caim_raw().

Internally, this is a wrapper around terra: :rast(), so support for image formats depends on the
capabilities of the terra package.

If no arguments are provided, a sample image will be returned.

Value

Numeric terra::SpatRaster, typically with layers named "Red"”, "Green”, and "Blue”. If the file
format or metadata prevents automatic layer naming, names will be inferred and a warning may be
issued.

Selecting a Region of Interest

To load a specific subregion from the image, use the arguments upper_left, width, and height.
These are expressed in raster coordinates, similar to a spreadsheet layout: columns first, then rows.
In other words, specify coordinates as c(column, row), not c(row, column), which is typical in
data.frame objects.

While any image editor can be used to obtain these values, this function was tested with ImageJ,
particularly the Fiji distribution. A recommended workflow:

1. Open the image in Fiji.

2. Draw a rectangular selection.

3. Go to Edit > Selection > Specify... to read upper_left, width, and height.

Note

The example image was created from a raw photograph taken with a Nikon Coolpix 5700 and a
FC-E9 auxiliary lens, processed with the following code:

zenith_colrow <- c(1290, 988)/2
diameter <- 756
z <- zenith_image(diameter, lens("Nikon_FCE9"))

https://imagej.net/ij/

read_caim_raw 73

a <- azimuth_image(z)

m <- lis.na(z)

caim <- read_caim_raw("DSCN4606.NEF")

caim <- crop_caim(caim, zenith_colrow - diameter/2, diameter, diameter)
caim <- correct_vignetting(caim, z, c(0.0638, -0.101))

caim <- c(mean(caim$Y, caim$M), caim$G, caim$C)

caim <- fisheye_to_equidistant(caim, z, a, m, radius = 300, k = 1)
write_caim(caim, "example.tif”, 16)

See Also

write_caim()

Examples

path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
zenith_colrow <- c(1276, 980)

diameter <- 756%2

caim <- read_caim(path, zenith_colrow - diameter/2, diameter, diameter)
plot(caim$Blue)

read_caim_raw Read a canopy image from a raw file

Description

Read unprocessed sensor data from a camera RAW file and split the signal by spectral band accord-
ing to the in-camera color filter array (CFA). Use this to obtain images with precise radiometry.

Usage

read_caim_raw(path, only_blue = FALSE, offset_value = NULL)

Arguments
path character vector of length one. Path to a file with raw data (including file exten-
sion).
only_blue logical vector of length one. If TRUE, return only the blue/cyan band.

offset_value numeric vector of length one. Optional black level offsets to replace black_level_per_channel
metadata obtained with rawpy.
Details

Uses Python rawpy through reticulate to access sensor data and black-level metadata. Optionally
extracts only the blue/cyan band.

https://www.libraw.org/docs/API-datastruct-eng.html#datastream_data:~:text=Per%2Dchannel%20black%20level%20correction
https://pypi.org/project/rawpy/

74 read_caim_raw

Value
Numeric terra::SpatRaster:

* single-layer if only_blue = TRUE.
* multi-layer if only_blue = FALSE, with one layer per color per CFA color (e.g., R, G, B).

Layers are named according to metadata in the raw file.

Check Python Accessibility

To ensure that R can access a Python installation, run the following test:

reticulate::py_eval("1+1")

If R can access Python successfully, you will see 2 in the console. If not, you will receive instruc-
tions on how to install Python.
Create a Virtual Environment

After passing the Python accessibility test, create a virtual environment using the following com-
mand:

reticulate::virtualenv_create()

Install rawpy

Install the rawpy package within the virtual environment:

reticulate::py_install("rawpy")

For RStudio Users

If you are an RStudio user who works with projects, you will need a .Renviron file in the root of
each project. To create a .Renviron file, follow these steps:

* Create a "New Blank File" named ".Renviron" (without an extension) in the project’s root
directory.

¢ Run bellow code:

path <- file.path(reticulate::virtualenv_root(),
reticulate::virtualenv_list(), "Scripts”, "python.exe")
paste("RETICULATE_PYTHON =", path)

* Copy/paste the line from the console (the string between the quotes) into the .Renviron file.
This is an example RETICULATE_PYTHON = ~/.virtualenvs/r-reticulate/Scripts/python.exe

rem_isolated_black_pixels

75

Do not forget to save the changes

By following these steps, users can easily set up their environment to access raw data efficiently,
but it is not the only way of doing it, you might know an easier or better one.

See the help page of read_caim() and fisheye_to_equidistant() as a complement to this help
page. Further details about raw files can be found in Dfaz et al. (2024).

References

Diaz GM, Lang M, Kaha M (2024). “Simple calibration of fisheye lenses for hemipherical photog-
raphy of the forest canopy.” Agricultural and Forest Meteorology, 352, 110020. ISSN 0168-1923,
doi:10.1016/j.agrformet.2024.110020.

See Also

read_caim()

Examples

Not run:

file_

name <- tempfile(fileext = ".NEF")

download.file("https://osf.io/s49py/download”, file_name, mode = "wb")

Geometric and radiometric corrections ----------------—----——--————-————-
zenith_colrow <- c(1290, 988)/2
diameter <- 756

z <-
a <-
m <-
caim
caim
caim
caim

zenith_image(diameter, lens(”Nikon_FCE9"))
azimuth_image(z)
lis.na(z)
<- read_caim_raw(file_name, only_blue = TRUE)
<- crop_caim(caim, zenith_colrow - diameter/2, diameter, diameter)
<- correct_vignetting(caim, z, c(0.0638, -0.101))
<- fisheye_to_equidistant(caim, z, a, m, radius = 300,
k=1, p=1, rmax = 100)

End(Not run)

rem_isolated_black_pixels

Remove isolated black pixels

Description

Replace single black pixels (FALSE) that are fully surrounded by white pixels (TRUE) with white.
Uses 8-connectivity.

Usage

rem_isolated_black_pixels(bin)

https://doi.org/10.1016/j.agrformet.2024.110020

76 rem_nearby_points

Arguments

bin logical terra::SpatRaster with a single layer.

Value

Logical terra::SpatRaster of one layer.

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

path <- system.file("external/example.txt"”, package = "rcaiman")
sky <- read_sky_cie(gsub(".txt", "", path), caim$Blue, z, a)
plot(sky$rr_raster)

sky <- sky$rr_raster * sky$modelrrzenith_dn

bin <- binarize_with_thr(r / sky, 0.9)
plot(bin)
bin2 <- rem_isolated_black_pixels(bin)
plot(bin2)

End(Not run)

rem_nearby_points Remove nearby sky points

Description

Select a subset of points so that no retained pair is closer than min_dist in planar or spherical space.

Usage

rem_nearby_points(
sky_points,
r = NULL,
z NULL,
a = NULL,
min_dist = 3,
space = "planar”,
use_window = TRUE

rem_nearby_points

Arguments

sky_points

r

z
a

min_dist

space

use_window

Details

77

data. frame with columns row and col (raster coordinates).

single-layer terra::SpatRaster or NULL. Optional ranking raster used to prioritize
retention (higher values kept first).

terra::SpatRaster generated with zenith_image().
terra::SpatRaster generated with azimuth_image().

numeric vector of length one. Minimum allowed distance between retained
points. Units: pixels for "planar”, deg for "spherical”.

character vector of length one. Coordinate system for distances: "planar” (de-
fault) or "spherical”.

logical of length one. If TRUE (default), use a 3 x 3 local mean around each
point; if FALSE, use only the central pixel.

When space = "planar”, distances are computed in image coordinates and z and a are ignored.
When space = "spherical”, distances are angular (deg) in hemispherical coordinates. If r is pro-
vided, points are ranked by the extracted raster values and retained in descending order.

Value

A data. frame with columns row and col for retained points.

Note

It is assumed that sky_points were extracted from an image with the same dimensions as the r, z,
and a rasters. No checks are performed.

Examples

Not run:

caim <- read_caim()

r <- caim$Blue

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
bin <- binarize_by_region(r, ring_segmentation(z, 30),

method = "thr_isodata")

bin <- bin & select_sky_region(z, 0, 80)

planar

g <- sky_grid_segmentation(z, a, 10, first_ring_different = TRUE)
sky_points <- extract_sky_points(r, bin, g, dist_to_black = 3)
sky_points_p <- rem_nearby_points(sky_points, r, min_dist = 100,

plot(r)

space = "planar")

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)
points(sky_points_p$col, nrow(caim) - sky_points_p$row, col = 3, pch = @)

spherical

78

sky_points_s <- rem_nearby_points(sky_points, r, z, a, min_dist = 30,
space = "spherical”)

plot(r)

points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

points(sky_points_s$col, nrow(caim) - sky_points_s$row, col = 3, pch = 0)

End(Not run)

rem_outliers

rem_outliers Remove statistical outliers in sky points

Description

Remove sky points considered outliers relative to their local neighbors in a user-specified variable.

Usage

trend = NULL
)
Arguments
sky_points data.frame with columns row and col (raster coordinates).
r terra::SpatRaster. Image from which sky_points were sampled (or any raster
with identical dimensions).
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image ().
k numeric vector of length one. Number of neighbors.

rem_outliers(
sky_points,
r,
z,
a,
k = 20,
angular_radius = 20,
laxity = 2,

cutoff_side = "both”,
use_window = TRUE,

angular_radius numeric vector of length one. The maximum radius for searching k-nearest

neighbors (KNN) in degrees.

laxity numeric vector of length one.

cutoff_side character vector of length one. Options are "both" (default), "upper" or "lower".
Controls which side(s) of the inequality are evaluated to detect outliers. See
Details.

use_window logical of length one. If TRUE (default), use a 3 x 3 local mean around each

point; if FALSE, use only the central pixel.

rem_outliers 79

trend numeric vector of length one or NULL. Zero to three. Specifies the order of the
polynomial surface fitted to the neighbors to account for spatial trends. Use
NULL (default) to skip detrending.

Details

Based on the Statistical Outlier Removal (SOR) filter from the PCL library. Distances are computed
on a spherical surface. The number of neighbors is controlled by k, and angular_radius sets the
maximum search radius (deg). If fewer than k neighbors are found within that radius, the point is
retained due to insufficient evidence for removal. The decision criterion follows Leys et al. (2013):

M —lazxity x MAD < x; < M + laxity x MAD

where x; is the value from r at sky point i, M and M AD are the median and median absolute devi-
ation, respectively, computed from the the neighbors of x;, and laxity is the user-defined threshold.

cutoff_side controls which side(s) of the inequality are evaluated: "both" (default), "left” (left
tail only), or "right"” (right tail only).

Value

The retained points represented as a data.frame with columns row and col, same as sky_points.

Note

This function assumes that sky_points and the terra::SpatRaster objects refer to the same image
geometry. No checks are performed.

References

Leys C, Ley C, Klein O, Bernard P, Licata L (2013). “Detecting outliers: Do not use standard
deviation around the mean, use absolute deviation around the median.” Journal of Experimental
Social Psychology, 49(4), 764-766. ISSN 0022-1031, doi:10.1016/j.jesp.2013.03.013.

Examples

Not run:
caim <- read_caim()
r <- caim$Blue
z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)
m <- lis.na(z)
bin <- binarize_by_region(r, ring_segmentation(z, 30),

method = "thr_isodata")
bin <- bin & select_sky_region(z, 0, 80)
g <- sky_grid_segmentation(z, a, 5, first_ring_different = TRUE)
sky_points <- extract_sky_points(r, bin, g,

dist_to_black = 3)

plot(r)
points(sky_points$col, nrow(caim) - sky_points$row, col = 2, pch = 10)

sky_points <- rem_outliers(sky_points, r, z, a,
k =5,

https://pointclouds.org/
https://doi.org/10.1016/j.jesp.2013.03.013

80 ring_segmentation

angular_radius = 20,

laxity = 2,

cutoff_side = "left")
points(sky_points$col, nrow(caim) - sky_points$row, col = 3, pch = @)

End(Not run)

ring_segmentation Assign zenith-ring labels

Description

Segment a hemispherical view into concentric rings by slicing the zenith angle from @ to 90 deg at
equal steps.

Usage

ring_segmentation(z, angle_width, return = "id")
Arguments

z terra::SpatRaster generated with zenith_image().

angle_width numeric vector of length one. Ring width in degrees. Must divide the 0-90 deg
range into an integer number of segments.

return character vector of length one. Output mode: "id" (default) or "angle".

Value

Single-layer terra::SpatRaster: ring IDs if return = "id"”, or mean zenith angle (deg) if return =
"angle”.

Examples

z <- zenith_image (600, lens())
rings <- ring_segmentation(z, 15)
plot(rings == 1)

sector_segmentation 81

sector_segmentation Assign azimuth-sector labels

Description
Segment a hemispherical view into equal azimuth sectors by slicing the azimuth angle from @ to
360 deg at fixed steps.

Usage

sector_segmentation(a, angle_width)

Arguments
a terra::SpatRaster generated with azimuth_image ().
angle_width numeric vector of lenght one. Sector width in degrees. Must divide the 0-360
deg range into an integer number of sectors.
Value

Single-layer terra::SpatRaster with integer values. Segments will resemble pizza slices.

Examples

z <- zenith_image (600, lens())

a <- azimuth_image(z)

sectors <- sector_segmentation(a, 15)
plot(sectors == 1)

select_sky_region Select sky region

Description

Select pixels from a single-layer image based on value limits.

Usage

select_sky_region(r, from, to)

Arguments

r single-layer terra::SpatRaster, typically from zenith_image () or azimuth_image().

from, to numeric vectors of length one. Angles in deg, inclusive limits.

82 sky_grid_centers

Details

Works with any numeric terra::SpatRaster of one layer, but is especially well-suited for images from
zenith_image() or azimuth_image(). For azimuth ranges that wrap around 0 deg, combine two
masks with logical OR.

Value

Logical terra::SpatRaster (TRUE for the selected region) of the same dimensions as r.

See Also

paint_with_mask()

Examples

Not run:

z <- zenith_image (1000, lens())

a <- azimuth_image(z)

ml <- select_sky_region(z, 20, 70)
plot(m1)

m2 <- select_sky_region(a, 330, 360)
plot(m2)

plot(ml & m2)

plot(ml | m2)

15 deg on each side of @

ml <- select_sky_region(a, 0, 15)
m2 <- select_sky_region(a, 345, 360)
plot(ml | m2)

You can use this
plot(!is.na(z))

instead of this
plot(select_sky_region(z, 0, 90))

End(Not run)

sky_grid_centers Map sky-grid centers to raster coordinates

Description

Return image row and column indices for the center point of each cell in a sky grid composed of
circular trapezoids of equal angular resolution defined by angle_width.

Usage

sky_grid_centers(z, a, angle_width)

sky_grid_segmentation 83

Arguments
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().

angle_width numeric vector of length one. Angle in deg that must divide both 0-360 and
0-90 into an integer number of segments. Retrieve a set of valid values by run-
ning lapply(c(45, 30, 18, 10), function(a) vapply(@:6, function(x) a/2"x,
).

Value

data.frame with integer columns row and col, one per grid cell.

See Also

sky_grid_segmentation()

Examples

z <- zenith_image (100, lens())
a <- azimuth_image(z)
sky_grid_centers(z, a, 45)

sky_grid_segmentation Assign sky-grid labels

Description
Segment a hemispherical view into equal-angle bins in zenith and azimuth, assigning each pixel a
grid-cell ID.

Usage

sky_grid_segmentation(z, a, angle_width, first_ring_different = FALSE)

Arguments
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().

angle_width numeric vector of length one. Angle in deg that must divide both 0-360 and
0-90 into an integer number of segments. Retrieve a set of valid values by run-
ning lapply(c(45, 30, 18, 10), function(a) vapply(@:6, function(x) a/2*x,
).

first_ring_different
logical vector of length one. If TRUE, do not subdivide the first ring.

84 sky_grid_segmentation

Details

The intersection of zenith rings and azimuth sectors forms a grid whose cells are circular trapezoids.
By default, IDs encode both components as sectorID * 1000 + ringID.If first_ring_different
= TRUE, the zenith ring is not subdivided.

The code below outputs a comprehensive list of valid values for angle_width. For convenience, the
column radians_denom can be used to provide angle_width as 180 / radians_denom_i, where
radians_denom_i is a value taken from radians_denom.

df <- data.frame(degrees = 90 / 1:180)

deg_to_pi_expr <- function(deg) {
frac <- MASS::fractions(deg / 180)
strsplit(as.character(frac), "/")L[111[2] %>% as.numeric()
3

df$radians_denom <- sapply(df$degrees, function(deg) deg_to_pi_expr(deg))

z <- zenith_image(10, lens())
a <- azimuth_image(z)
u<--cQ)
for (i in 1:nrow(df)) {
u <- c(u, tryCatch(is((sky_grid_segmentation(z, a,
180/df$radians_denom[i])), "SpatRaster”),
error = function(e) FALSE))
3
df <- dffu, 1]
df

Value

Single-layer terra::SpatRaster with integer labels. The object carries attributes angle_width and
first_ring_different.

See Also

sky_grid_centers(), ring_segmentation(), sector_segmentation()

Examples

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

g <- sky_grid_segmentation(z, a, 15)
plot(g == 24005)

Not run:

display_caim(g = g)

End(Not run)

test_lens_coef 85

test_lens_coef Test lens projection function

Description

Verify that a lens projection maps zenith 0 deg to 0 and 90 to 1.

Usage

test_lens_coef (lens_coef)

Arguments
lens_coef numeric vector. Polynomial coefficients of the lens projection function. See
lens().
Details

The package tolerate a number very close to 1 at 90 deg but not exactly 1 as long as it is greater
than 1. See testthat: :expect_equal () for tolerance details.

When the test fails at "Test that lens projection function does not predict values barely below one",
the best practice is to manually edit the last coefficient (e.g., change -0.0296 to -0.0295).

If the check "works within the 0—1 range" fails, new calibration data may be required.

Value

Invisibly returns TRUE if all checks pass; otherwise an error is thrown.

See Also

calc_relative_radius()

Examples

test_lens_coef (lens(”"Nikon_FCE9"))
test_lens_coef (2/pi)

86 thr_isodata

thr_isodata Compute IsoData threshold

Description

Compute a threshold using the IsoData algorithm Ridler and Calvard (1978), recommended by
Jonckheere et al. (2005).

Usage

thr_isodata(x)

Arguments
X numeric vector or a single-column matrix or data. frame able to be coerced to
numeric.
Details

Implementation follows the IsoData method by Gabriel Landini, as implemented in autothresholdr
Unlike that version, this function accepts numeric data over an arbitrary range. NA values are ig-
nored.

Value

Numeric vector of length one.

References

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction es-
timation of forests from digital hemispherical photography.” Agricultural and Forest Meteorology,
132(1-2), 96-114. doi:10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630—632. doi:10.1109/tsmc.1978.4310039.

Examples

caim <- read_caim()
thr_isodata(caim$Bluel[])

::auto_thresh().

https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

thr mblt 87

thr_mblt Compute model-based thresholds

Description

Compute threshold values from background digital numbers (DN) using Equation 1 in Diaz and
Lencinas (2018), a linear function whose slope can be weighted.

Usage

thr_mblt(dn, intercept, slope)

Arguments

dn numeric vector or terra::SpatRaster. Background digital number. Values must
be normalized; if taken from JPEG, apply gamma back correction.

intercept, slope
numeric vectors of length one. Linear coefficients.

Details

The model was derived from canopy targets (perforated, rigid, dark surfaces) backlit under ho-
mogeneous illumination, photographed with a Nikon Coolpix 5700 in JPEG mode. Images were
gamma-back-corrected with a default gamma of 2.2 (see invert_gamma_correction()). Results
showed that the optimal threshold is linearly related to the background DN (see Figures 1 and 7 in
Diaz and Lencinas (2018)). This shifted the goal from estimating an optimal threshold Song et al.
(2014) to estimating the background DN as if the canopy were absent, as proposed by Lang et al.
(2010).

To apply the weighting parameter (w) from Equation 1, supply slope as slope x w.

Equation 1 was developed with 8-bit images. New coefficients should be calibrated in the 0-255
domain, which is what thr_mblt() expects, even though the dn argument must be normalized.
This design choice harmonizes behavior across the package.

Value

An object of the same class and dimensions as dn.

Note

Users are encouraged to acquire raw files (see read_caim_raw()).

References

Diaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204—1216. doi:10.1139/cjfr20180006.

Lang M, Kuusk A, Méttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation

https://doi.org/10.1139/cjfr-2018-0006

88 thr _twocorner

from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20-29. doi:10.1016/j.agrformet.2009.08.001.

Song GM, Doley D, Yates D, Chao K, Hsieh C (2014). “Improving accuracy of canopy hemi-
spherical photography by a constant threshold value derived from an unobscured overcast sky.”
Canadian Journal of Forest Research, 44(1), 17-27. doi:10.1139/cjfr20130082.

See Also

normalize_minmax(), invert_gamma_correction()

Examples

thr_mblt(invert_gamma_correction(125), -7.8, 0.95 * 0.5)

thr_twocorner Compute two-corner thresholds

Description

Apply Rosin’s geometric corner detector for unimodal histograms Rosin (2001) to both sides of a
bimodal canopy histogram as in Macfarlane’s two-corner approach Macfarlane (2011). Optional
slope-reduction as in Macfarlane is supported. Peak detection can use a prominence-based method
or Macfarlane’s original windowed maxima.

Usage
thr_twocorner(
X’
sigma = 2,
slope_reduction = TRUE,
method = "prominence”,

diagnose = FALSE,
adjust_par = TRUE

)
Arguments
X numeric vector or a single-column matrix or data.frame able to be coerced to
numeric.
sigma numeric vector of length one. Standard deviation (DN) of the Gaussian kernel

used to smooth the histogram prior to peak detection and Rosin’s construction.
slope_reduction

logical vector of length one. If TRUE, apply Macfarlane’s slope-reduction before

Rosin’s construction on each side.

method character vector of length one. Peak detection strategy. One of "prominence”
(default) or "macfarlane”.

https://doi.org/10.1016/j.agrformet.2009.08.001
https://doi.org/10.1139/cjfr-2013-0082

thr_twocorner 89

diagnose logical vector of length one. If TRUE, plot the geometric construction.

adjust_par logical vector of length one. If TRUE and diagnose = TRUE, temporarily adjust
and then restore graphical parameters.

Details

Runs the following pipeline:

1. Build an 8-bit histogram of x after min—-max normalization to [0, 255].

2. Smooth the histogram with a discrete Gaussian kernel of standard deviation sigma (in DN),
using reflective padding to mitigate edge bias.

3. Detect the two mode peaks according to method:
* method = "prominence”: find local maxima via discrete derivatives with plateau han-
dling; find nearest left/right minima; compute peak prominence as min(y[p]—y|[L], y[p]—

y[R)); filter by minimum prominence and minimum peak separation; select the pair that
maximizes min(prom,g, prom,;,p;)-

* method = "macfarlane”: search peaks within fixed DN windows as in Macfarlane (2011).
Peak search is performed on the unsmoothed histogram, as originally proposed.

4. Apply Rosin’s corner construction on each mode. The line end at the “first empty bin after the
last filled bin” is determined on the unsmoothed histogram Rosin (2001). If slope_reduction
= TRUE and the peak height exceeds the mean of the smoothed histogram, the peak height is
reduced to that mean before the geometric construction (Macfarlane’s variant).

5. Derive thresholds:

T, = DNy + (DNy. — DN;.) x 0.25

T, = DNi. + (DN, — DN;.) x 0.50

T, = DNy, + (DN,. — DN;.) x 0.75

where DN;. and DN, are the lower and upper corners.

When diagnose = TRUE, a geometric construction like the one shown below is sent to the active
graphics device.

90 thr_twocorner

: : When diagnose = TRUE and
adjust_par = TRUE, the function temporarily adjusts margins to draw the geometric construction
in a large square format and restores the previous settings on exit. If adjust_par = FALSE, no
parameters are changed and the plot respects the current device/layout.

Value
A list with:

Ip Lower peak DN.

Ic Lower corner DN (Rosin on the left mode).
tl Low threshold derived from 1c and uc.

tm Mid threshold derived from 1c and uc.

th High threshold derived from 1c and uc.

uc Upper corner DN (Rosin on the right mode).
up Upper peak DN.

References

Macfarlane C (2011). “Classification method of mixed pixels does not affect canopy metrics
from digital images of forest overstorey.” Agricultural and Forest Meteorology, 151(7), 833-840.
doi:10.1016/j.agrformet.2011.01.019.

Rosin PL (2001). “Unimodal thresholding.” Pattern Recognition, 34(11), 2083-2096. ISSN 0031-
3203, doi:10.1016/s00313203(00)001369.

https://doi.org/10.1016/j.agrformet.2011.01.019
https://doi.org/10.1016/s0031-3203%2800%2900136-9

validate_cie_model 91

Examples

caim <- conventional_lens_image()

Prominence-based peak detection, Gaussian smoothing with sigma = 2 DN

thr <- thr_twocorner(caim$Blue[], sigma = 2, slope_reduction = FALSE,
method = "prominence”)

Original Macfarlane peak search (for comparison)

thr2 <- thr_twocorner(caim$Blue[], sigma = 2, slope_reduction = TRUE,
method = "macfarlane”)

data.frame(unlist(thr), unlist(thr2))

validate_cie_model Validate CIE sky models

Description
Validate CIE sky models fitted with fit_cie_model() (or ootb_sky_cie()) using k-fold cross-
validation on relative radiance.

Usage

validate_cie_model(model, k = 10)

Arguments

model list. Output of fit_cie_model().

k numeric vector of length one. Number of folds.
Details

Validation uses k-fold cross-validation with k = 10 by default (Kohavi 1995). For each fold, predic-
tions are compared against observed relative radiance and a simple linear regression of predicted
vs. observed is fitted, following Pifieiro et al. (2008). Outliers are detected with a median-MAD
rule (see rem_outliers()) using a threshold of 3 and removed before fitting the regression.

Value

A list with:

Im An object of class 1m (see stats: :1m()) for predicted vs. observed.

pred Numeric vector of predicted relative radiance used in 1m.

obs Numeric vector of observed relative radiance used in 1m.

r_squared Coefficient of determination (R?).

rmse Root mean squared error (RMSE).

mae Median absolute error (MAE).

is_outlier Logical vector marking outliers (MAD > 3) in the original sky-point set.

metric Numeric value. Mean squared deviation as in Gauch et al. (2003).

92

write_caim

References

Gauch HG, Hwang JTG, Fick GW (2003). “Model evaluation by comparison of model-based pre-
dictions and measured values.” Agronomy Journal, 95(6), 1442—-1446. ISSN 1435-0645, doi:10.2134/
agronj2003.1442.

Kohavi R (1995). “A study of cross-validation and bootstrap for accuracy estimation and model
selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence -
Volume 2, IJCAT’95, 1137-1143. ISBN 1558603638.

Pifieiro G, Perelman S, Guerschman JP, Paruelo JM (2008). “How to evaluate models: Observed
vs. predicted or predicted vs. observed?” Ecological Modelling, 216(3-4), 316-322. doi:10.1016/
j-ecolmodel.2008.05.006.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())

a <- azimuth_image(z)

path <- system.file("external/sky_points.csv”, package = "rcaiman")
sky_points <- read.csv(path)[c("Y", "X")]

names(sky_points) <- c("row”, "col")

rr <- extract_rr(caim$Blue, z, a, sky_points)

set.seed(7)

model <- fit_cie_model(rr, sun_angles = c(z = 49.5, a = 27.4),
general_sky_type = "Clear"”, method = "CG")

val <- validate_cie_model(model, k = 10)

val$r_squared

val$rmse

End(Not run)

write_caim Write canopy image

Description

Wrapper around terra: :writeRaster() that writes a canopy image as GeoTIFF with 8- or 16-bit
unsigned integers, setting CRS and extent.

Usage

write_caim(caim, path, bit_depth)

https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.1016/j.ecolmodel.2008.05.006
https://doi.org/10.1016/j.ecolmodel.2008.05.006

write_sky_cie 93

Arguments
caim terra::SpatRaster.
path character vector of length one. Destination file path (extension .tif will be
enforced).
bit_depth numeric vector of length one. Either 8 or 16.
Details

Adds the .tif extension to path if missing. The CRS is set to EPSG:7589 and the extent to
[0, ncol]l x [@, nrow] in pixel units. Data are written as INT1U when bit_depth = 8 and INT2U
when bit_depth =16.

Value

No return value. Called for side effects.

Examples

Not run:

caim <- read_caim() %>% normalize_minmax(@, 255)

write_caim(caim *x (278 - 1), file.path(tempdir(), "test_8bit"), 8)
write_caim(caim * (2*16 - 1), file.path(tempdir(), "test_16bit"), 16)

Note: values are scaled by (2*bit_depth - 1) to avoid the maximum bin,
which read_caim() might turn NA.

End(Not run)

write_sky_cie Write and read out-of-the-box CIE sky model and raster

Description

Persist and restore the out-of-the-box CIE sky model, its diagnostics, and related rasters/points.
The writer produces a human-readable . txt manifest plus CSV and GeoPackage sidecar files. The
reader reconstructs a list object compatible with the out-of-the-box pipeline.

Usage

write_sky_cie(sky_cie, name)

read_sky_cie(name, r, z, a, refit_allowed = FALSE)

94 write_sky_cie

Arguments

sky_cie list. Object holding the fitted CIE model, diagnostics, and derived rasters, as
produced by the out-of-the-box workflow.

name character vector of length one. File base name without extension. A path can be
included, e.g., "C:/Users/Doe/Documents/DSCN4500".

r numeric terra::SpatRaster of one layer. The canopy image used in the out-of-
the-box workflow (used by read_sky_cie() when refitting).

z terra::SpatRaster generated with zenith_image().

a terra::SpatRaster generated with azimuth_image ().

refit_allowed logical vector of length one. If TRUE, allow automatic re-fit when manual edits
are detected.

Details

Encoding is UTF-8. Decimal point is .. Unknown keys are ignored with a warning. Missing
required keys trigger an error. The manifest begins with format_version: which is checked for
basic compatibility.

When read_sky_cie() detects manual edits (moved sun disk or changed sky points) and refit_allowed
= TRUE, it re-fits the CIE model using the current r, z, and a, then revalidates.

Value

See Functions.

Functions

write_sky_cie No return value. Writes six files to disk with the prefix name (see below).

read_sky_cie Returns a 1ist similar to the output of ootb_sky_cie() and suitable as input to
ootb_sky_above().

Files written by write_sky_cie

* Plain text manifest: name. txt

* CSV with sky radiance samples: name_rr.csv

* CSV with sky radiance samples for the upward pass: name_rr_up. csv (optional)
* GeoPackage with sky sample points: name_sky_points.gpkg

* GeoPackage with the sun disk location: name_sun_disk. gpkg

* CSV with validation pairs: name_val.csv

Text file keys
format_version: Semantic version of the manifest.
sun_theta: Solar zenith (deg).

sun_phi: Solar azimuth (deg).

zenith_azimuth_from_row_col 95

method_sun: Method used to optimize sun coordinates.
zenith_dn: Reference DN at zenith.

start_a:...start_e: Initial CIE coefficients.
is_from_detected_sky_dn: Enables _rr_up.csv if TRUE.
fit_a:...fit_e: Fitted CIE coefficients.

method: Method used to fit CIE coefficients.

dist_to_black: Argument passed to extract_sky_points().
grid: Sky grid parameters (angle_width, first_ring_different).
min_spherical_dist: Sampling buffer distance (deg).
sky_points_no: Number of sky points.

outliers_no: Number of sky points that were detected as outliers.
rmse: Validation metrics. Root mean squared error.

r_squared: Validation metric. Coefficient of determination.

mae: Validation metrics. Mean absolute error.

[Tested: . . .] Enumerates tested methods/grids/distances.

Examples

Not run:

caim <- read_caim()

z <- zenith_image(ncol(caim), lens())
a <- azimuth_image(z)

Read a previously written model

path <- system.file("external/example.txt"”, package = "rcaiman")

sky_cie <- read_sky_cie(gsub(".txt", "", path), r = caim$Blue, z = z, a = a,
refit_allowed = TRUE)

End(Not run)

zenith_azimuth_from_row_col
Map between zenith—azimuth angles and raster coordinates

Description

Bidirectional helpers to convert between angular coordinates on the hemispherical image (zenith,
azimuth) and raster coordinates (row, col).

Usage

zenith_azimuth_from_row_col(z, a, row, col)

row_col_from_zenith_azimuth(z, a, zenith, azimuth)

96 zenith_image

Arguments
z terra::SpatRaster generated with zenith_image().
a terra::SpatRaster generated with azimuth_image().
row, col numeric vectors. raster coodinates. Must have equal length.

zenith, azimuth numeric vectors. Angles in degrees. Must have equal length.

Details

zenith, azimuth — row, col. A sparse set of valid sky points is sampled over the image

and enriched with their angular coordinates. Two local least-squares surfaces (spatial::surf.ls,

np = 6) are fitted to predict row and col as smooth functions of (azimuth, zenith). Predictions

are rounded to the nearest integer index. Out-of-bounds indices are not produced under normal

conditions; clamp externally if needed.

row, col — zenith, azimuth. Angles are obtained by direct lookup on z and a using terra: : cel1FromRowCol.
If any queried cell is NA (e.g., outside the calibrated lens footprint), a synthetic z is reconstructed

from the lens model attached to z (attribute lens_coef), and a is rebuilt with azimuth_image ()

using the stored orientation attribute in a. This yields robust angle retrieval near borders.

Value

See Functions

Functions

row_col_from_zenith_azimuth Return image indices for given angles.

zenith_azimuth_from_row_col Return angles in degrees for given image indices.

Examples

z <- zenith_image (1000, lens())
a <- azimuth_image(z)

rc <- row_col_from_zenith_azimuth(z, a, zenith = c(30, 60), azimuth = c(90, 270))
rc

ang <- zenith_azimuth_from_row_col(z, a, row = rc$row, col = rc$col)
ang

zenith_image Build Zenith image

Description

Build a single-layer image with zenith angle values, assuming upwards-looking hemispherical pho-
tography with the optical axis vertically aligned.

zenith_image 97

Usage

zenith_image(diameter, lens_coef)

Arguments
diameter numeric vector of length one. Diameter in pixels expressed as an even integer.
This places the zenith point between pixels. Snapping the zenith point between
pixels does not affect accuracy because half-pixel is less than the uncertainty in
localizing the circle within the picture.
lens_coef numeric vector. Polynomial coefficients of the lens projection function. See
lens().
Value

terra::SpatRaster with zenith angles in degrees, showing a complete hemispherical view with the
zenith at the center. The object carries attributes lens_coef.

Examples

z <- zenith_image (600, lens("Nikon_FCE9"))
plot(z)

Index

x datasets
cie_table, 18

apply_by_direction, 3

apply_by_direction(), 46, 48, 60, 64

autothresholdr: :auto_thresh(), 7, 86

azimuth_image, 5

azimuth_image(), 4, 17, 20, 28, 38, 40, 42,
54,60, 61,63, 66, 69, 77, 78, 81-83,
94, 96

binarize_by_region, 6

binarize_with_thr, 8

binarize_with_thr(), 20, 27, 28, 39, 49, 63,
66

calc_diameter, 9
calc_relative_radius, 10
calc_relative_radius(), 85
calc_spherical_distance, 11
calc_zenith_colrow, 12
calc_zenith_colrow(), 25, 26, 30
calibrate_lens, 13
calibrate_lens(), 10, 25, 26, 33, 58
chessboard, 16
chessboard(), 39, 66
cie_image, 17

cie_image(), 64
cie_table, I8, 18, 43
complementary_gradients, 19
complementary_gradients(), 60
compute_canopy_openness, 20
conventional_lens_image, 22
correct_vignetting, 23
crop_caim, 24
crosscalibrate_lens, 25
crosscalibrate_lens(), 16

data.frame, 79
defuzzify, 26

98

display_caim, 27

EBImage: :display(), 27
estimate_sun_angles, 28
estimate_sun_angles(), 17,43
expand_noncircular, 30
expand_noncircular(), 9
extract_dn, 31

extract_dn(), 48, 52
extract_feature, 32
extract_feature(), 42
extract_radiometry, 33
extract_radiometry(), 16, 23,43, 44, 53
extract_rr, 38
extract_rr(), 43, 46, 48, 52, 54, 61, 64
extract_sky_points, 39
extract_sky_points(), 31, 64, 66

fisheye_to_equidistant, 40
fisheye_to_equidistant(), 75
fisheye_to_pano, 41

fit_cie_model, 43
fit_cie_model(), 31, 46, 54, 63, 64, 67, 91
fit_coneshaped_model, 46
fit_trend_surface, 47

grow_black, 49

hsp_compat, 50

hsp_compat(), 27
hsp_read_manual_input (hsp_compat), 50
hsp_read_opt_sky_coef (hsp_compat), 50
hsp_write_sky_points (hsp_compat), 50
hsp_write_sun_coord (hsp_compat), 50

interpolate_planar, 52

interpolate_spherical, 54

interpolate_spherical(), 62

invert_gamma_correction, 56

invert_gamma_correction(), 43, 44, 53, 60,
87, 88

INDEX

lens, 57
lens(), 9, 10, 85,97
1lidR: :knnidw(), 41, 52, 53

normalize_minmax, 59
normalize_minmax(), 7, 68, 88

ootb_bin, 60
ootb_sky_above, 61
ootb_sky_cie, 63
ootb_sky_cie(), 62, 91
optim_dist_to_black, 65
optim_sun_angles, 67

paint_with_mask, 68
paint_with_mask(), 82
polar_qtree, 69
polar_qtree(), 60

read_bin, 70
read_caim, 71
read_caim(), 23, 24,27,30,71,75
read_caim_raw, 73
read_caim_raw(), 19, 24, 38, 43, 44, 53, 60,
63,72,87
read_sky_cie (write_sky_cie), 93
rem_isolated_black_pixels, 75
rem_nearby_points, 76
rem_nearby_points(), 63, 64
rem_outliers, 78
rem_outliers(), 64, 91
ring_segmentation, 80
ring_segmentation(), 6, 32, 84
row_col_from_zenith_azimuth
(zenith_azimuth_from_row_col),
95

sector_segmentation, 81
sector_segmentation(), 32, 84
select_sky_region, 81
sky_grid_centers, 82
sky_grid_centers(), 84
sky_grid_segmentation, 83
sky_grid_segmentation(), 17,27, 28, 32,
39,42, 63, 64, 66, 83
spatial::surf.1s(), 47, 48
stats::1m(), 46, 91
stats::optim(), 43, 44, 67

terra::extract(), 31

99

terra::rast(), 70-72

terra: :SpatRaster, 4-8, 17-20, 23, 24,
26-28, 30-33, 38—42, 48, 49, 52-56,
59-64, 66, 68-72, 74, 76-84, 87, 93,
94, 96, 97

terra::writeRaster(), 92

test_lens_coef, 85

test_lens_coef (), 16

testthat: :expect_equal(), 85

thr_isodata, 86

thr_isodata(), 7, 8

thr_mblt, 87

thr_mblt(), 87

thr_twocorner, 88

thr_twocorner(), 7, 8

validate_cie_model, 91
validate_cie_model(), 64

write_bin (read_bin), 70
write_caim, 92
write_caim(), 71,73
write_sky_cie, 93

zenith_azimuth_from_row_col, 95

zenith_image, 96

zenith_image(), 4, 5, 10, 17, 20, 23, 28, 30,
38, 40, 42, 54, 60, 61, 63, 66, 69, 77,
78, 80-83, 94, 96

	apply_by_direction
	azimuth_image
	binarize_by_region
	binarize_with_thr
	calc_diameter
	calc_relative_radius
	calc_spherical_distance
	calc_zenith_colrow
	calibrate_lens
	chessboard
	cie_image
	cie_table
	complementary_gradients
	compute_canopy_openness
	conventional_lens_image
	correct_vignetting
	crop_caim
	crosscalibrate_lens
	defuzzify
	display_caim
	estimate_sun_angles
	expand_noncircular
	extract_dn
	extract_feature
	extract_radiometry
	extract_rr
	extract_sky_points
	fisheye_to_equidistant
	fisheye_to_pano
	fit_cie_model
	fit_coneshaped_model
	fit_trend_surface
	grow_black
	hsp_compat
	interpolate_planar
	interpolate_spherical
	invert_gamma_correction
	lens
	normalize_minmax
	ootb_bin
	ootb_sky_above
	ootb_sky_cie
	optim_dist_to_black
	optim_sun_angles
	paint_with_mask
	polar_qtree
	read_bin
	read_caim
	read_caim_raw
	rem_isolated_black_pixels
	rem_nearby_points
	rem_outliers
	ring_segmentation
	sector_segmentation
	select_sky_region
	sky_grid_centers
	sky_grid_segmentation
	test_lens_coef
	thr_isodata
	thr_mblt
	thr_twocorner
	validate_cie_model
	write_caim
	write_sky_cie
	zenith_azimuth_from_row_col
	zenith_image
	Index

