Package ‘reqres’

August 20, 2025

Type Package

Title Powerful Classes for HTTP Requests and Responses
Version 1.0.0

Maintainer Thomas Lin Pedersen <thomasp85@gmail .com>

Description In order to facilitate parsing of http requests and creating
appropriate responses this package provides two classes to handle a lot of
the housekeeping involved in working with http exchanges. The infrastructure
builds upon the 'rook' specification and is thus well suited to be combined
with 'httpuv' based web servers.

License MIT + file LICENSE
Encoding UTF-8
Depends R (>=3.5)

Imports R6, stringi, urltools, tools, brotli, jsonlite, xml2,
webutils, utils, cli, rlang, lifecycle, base64enc, sodium,
promises, mirai

RoxygenNote 7.3.2
Suggests fiery, testthat (>= 3.0.0), covr, keyring, shiny

URL https://reqres.data-imaginist.com,
https://github.com/thomasp85/reqres

BugReports https://github.com/thomasp85/reqres/issues
Config/testthat/edition 3

Config/build/compilation-database true

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut] (ORCID:
<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN
Date/Publication 2025-08-20 07:30:08 UTC

https://reqres.data-imaginist.com
https://github.com/thomasp85/reqres
https://github.com/thomasp85/reqres/issues
https://orcid.org/0000-0002-5147-4711

2

Contents

Index

abort_http_problem oL
default_formatters

default_parsers
formatters

query_parser

random key oL

Request
Response
session_cookie

PASEIS . « v v o e e e e e e e e e

to_http_date

abort_http_problem

abort_http_problem

Abort request processing with an HTTP problem response

Description

This set of functions throws a classed error indicating that the request should be responded to with
an HTTP problem according to the spec defined in RFC 9457 or a bare response code. These
conditions should be caught and handled by the handle_problem() function.

Usage

abort_http_problem(

)

code,

detail,

title = NULL,
type = NULL,

instance = NULL,
message = detail,
call = caller_env()

abort_status(code, message = status_phrase(code),

abort_bad_request(

)

detail,

instance = NULL,
message = detail,
call = caller_env()

., call = caller_env())

https://datatracker.ietf.org/doc/html/rfc9457

abort_http_problem

abort_unauthorized(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

abort_forbidden(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

abort_not_found(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

abort_method_not_allowed(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

abort_not_acceptable(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

abort_conflict(
detail,
instance = NULL,
message = detail,
call = caller_env()

)

4 default_formatters

abort_gone(detail, instance = NULL, ..., message = detail, call = caller_env())

abort_internal_error(
detail,
instance = NULL,
message = detail,
call = caller_env()

)
handle_problem(response, cnd)

is_reqres_problem(cnd)

Arguments

code The HTTP status code to use

detail A string detailing the problem. Make sure the information given does not pose
a security risk

title A human-readable title of the issue. Should not vary from instance to instance
of the specific issue. If NULL then the status code title is used

type A URI that uniquely identifies this type of problem. The URI must resolve to
an HTTP document describing the problem in human readable text. If NULL, the
most recent link to the given status code definition is used

instance A unique identifier of the specific instance of this problem that can be used for
further debugging. Can be omitted.
Arguments passed on to rlang: :error_cnd
class The condition subclass.
use_cli_format Whether to use the cli package to format message. See local_use_cli().
trace A trace object created by trace_back().
parent A parent condition object.

message A default message to inform the user about the condition when it is signalled.

call A function call to be included in the error message. If an execution environment
of a running function, the corresponding function call is retrieved.

response The Response object associated with the request that created the condition

cnd The thrown condition

default_formatters A list of default formatter mappings
Description

This list matches the most normal mime types with their respective formatters using default argu-
ments. For a no-frills request parsing this can be supplied directly to Response$format (). To add
or modify to this list simply supply the additional parsers as second, third, etc, argument and they
will overwrite or add depending on whether it specifies a mime type already present.

default_parsers 5

Usage

default_formatters

See Also

formatters for an overview of the build in formatters in reqres

Examples

Not run:
res$format(default_formatters, 'text/plain' = format_plain(sep = ' "))

End(Not run)

default_parsers A list of default parser mappings

Description

This list matches the most normal mime types with their respective parsers using default arguments.
For a no-frills request parsing this can be supplied directly to Request$parse(). To add or mod-
ify to this list simply supply the additional parsers as second, third, etc, argument and they will
overwrite or add depending on whether it specifies a mime type already present.

Usage

default_parsers

See Also

parsers for an overview of the build in parsers in reqres

Examples

Not run:
req$parse(default_parsers, 'application/json' = parse_json(flatten = TRUE))

End(Not run)

6 formatters

formatters Pre-supplied formatting generators

Description

This set of functions can be used to construct formatting functions adhering to the Response$format()

requirements.
Usage
format_json(
dataframe = "rows”,
matrix = "rowmajor",

Date = "IS08601",
POSIXt = "string”,

factor = "string”,
complex = "string",
raw = "base64"”,
null = "list”,

na = "null”,
auto_unbox = FALSE,
digits = 4,

pretty = FALSE,
force = FALSE

)

format_plain(sep = "\n")

format_xml(root_name = "document”, encoding = "UTF-8", options = "as_xml")
format_html(encoding = "UTF-8", options = "as_html")

format_table(...)

Arguments

dataframe how to encode data.frame objects: must be one of "rows’, ’columns’ or "values’

matrix how to encode matrices and higher dimensional arrays: must be one of ‘rowma-
jor’ or ’columnmajor’.

Date how to encode Date objects: must be one of ’ISO8601” or *epoch’

POSIXt how to encode POSIXt (datetime) objects: must be one of ’string’, "ISO8601°,
“epoch’ or “'mongo’

factor how to encode factor objects: must be one of ’string’ or “integer’

complex how to encode complex numbers: must be one of ’string’ or ’list’

raw how to encode raw objects: must be one of “base64’, hex’ or 'mongo’

formatters 7

null how to encode NULL values within a list: must be one of "null’ or ’list’

na how to print NA values: must be one of 'null’ or ’string’. Defaults are class
specific

auto_unbox automatically unbox () all atomic vectors of length 1. It is usually safer to avoid

this and instead use the unbox () function to unbox individual elements. An
exception is that objects of class AsIs (i.e. wrappedin I()) are not automatically
unboxed. This is a way to mark single values as length-1 arrays.

digits max number of decimal digits to print for numeric values. Use I() to specify
significant digits. Use NA for max precision.
pretty adds indentation whitespace to JSON output. Can be TRUE/FALSE or a number

specifying the number of spaces to indent (default is 2). Use a negative number
for tabs instead of spaces.

force unclass/skip objects of classes with no defined JSON mapping

sep The line separator. Plain text will be split into multiple strings based on this.

root_name The name of the root element of the created xml

encoding The character encoding to use in the document. The default encoding is ‘UTF-
8’. Available encodings are specified athttp://xmlsoft.org/html/libxml-encoding.
html#xmlCharEncoding.

options default: ‘format’. Zero or more of

format Format output

no_declaration Drop the XML declaration

no_empty_tags Remove empty tags

no_xhtml Disable XHTMLI rules

require_xhtml Force XHTML rules

as_xml Force XML output

as_html Force HTML output

format_whitespace Format with non-significant whitespace

parameters passed on to write.table()

Value

A function accepting an R object

See Also

parsers for converting Request bodies into R objects

default_formatters for a list that maps the most common mime types to their respective formatters

Examples

fake_rook <- fiery::fake_request(
"http://example.com/test’,
content = '',
headers = list(

Content_Type = 'text/plain’,

http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding
http://xmlsoft.org/html/libxml-encoding.html#xmlCharEncoding

8 parsers

Accept = 'application/json, text/csv'
)
)

req <- Request$new(fake_rook)

res <- req$respond()

res$body <- mtcars

res$format(json = format_json(), csv = format_table(sep=","'))
res$body

Cleaning up connections
rm(fake_rook, req, res)
gcQ

parsers Pre-supplied parsing generators

Description
This set of functions can be used to construct parsing functions adhering to the Request$parse()
requirements.

Usage

parse_json(
simplifyVector = TRUE,
simplifyDataFrame = simplifyVector,
simplifyMatrix = simplifyVector,
flatten = FALSE

parse_plain(sep = "\n")
parse_xml(encoding = "", options = "NOBLANKS", base_url = "")
parse_html(
encoding = "",
options = c("RECOVER”, "NOERROR", "NOBLANKS"),
base_url = ""
parse_multiform()
parse_queryform(delim = NULL)

parse_table(...)

parsers

Arguments

simplifyVector coerce JSON arrays containing only primitives into an atomic vector
simplifyDataFrame

coerce JSON arrays containing only records (JSON objects) into a data frame

simplifyMatrix coerce JSON arrays containing vectors of equal mode and dimension into matrix

flatten
sep

encoding

options

base_url

delim

or array
automatically flatten() nested data frames into a single non-nested data frame
The line separator. Plain text will be split into multiple strings based on this.

Specify a default encoding for the document. Unless otherwise specified XML
documents are assumed to be in UTF-8 or UTF-16. If the document is not
UTF-8/16, and lacks an explicit encoding directive, this allows you to supply a
default.

Set parsing options for the libxml2 parser. Zero or more of
RECOVER recover on errors

NOENT substitute entities

DTDLOAD Iload the external subset

DTDATTR default DTD attributes

DTDVALID validate with the DTD

NOERROR suppress error reports

NOWARNING suppress warning reports

PEDANTIC pedantic error reporting

NOBLANKS remove blank nodes

SAX1 use the SAX1 interface internally

XINCLUDE Implement XInclude substitution

NONET Forbid network access

NODICT Do not reuse the context dictionary
NSCLEAN remove redundant namespaces declarations
NOCDATA merge CDATA as text nodes
NOXINCNODE do not generate XINCLUDE START/END nodes

COMPACT compact small text nodes; no modification of the tree allowed af-
terwards (will possibly crash if you try to modify the tree)

OLD10 parse using XML-1.0 before update 5

NOBASEFIX do not fixup XINCLUDE xml:base uris

HUGE relax any hardcoded limit from the parser

OLDSAX parse using SAX2 interface before 2.7.0

IGNORE_ENC ignore internal document encoding hint

BIG_LINES Store big lines numbers in text PSVI field

When loading from a connection, raw vector or literal html/xml, this allows you

to specify a base url for the document. Base urls are used to turn relative urls
into absolute urls.

The delimiter to use for parsing arrays in non-exploded form. Either NULL (no

n non

delimiter) or one of ", ", " |", or

parameters passed on to read. table()

10 query_parser

Value

A function accepting a raw vector and a named list of directives

See Also

formatters for converting Response bodies into compatible types

default_parsers for a list that maps the most common mime types to their respective parsers

Examples

fake_rook <- fiery::fake_request(
"http://example.com/test"’,
content = '[1, 2, 3, 4]',
headers = list(
Content_Type = 'application/json'
)
)

req <- Request$new(fake_rook)
req$parse(json = parse_json())
req$body

Cleaning up connections
rm(fake_rook, req)
gcO

query_parser Parse a query string

Description

This function facilitates the parsing of querystrings, either from the URL or a POST or PUT body
with Content-Type set to application/x-www-form-urlencoded.

Usage
query_parser(query = NULL, delim = NULL)

Arguments
query The query as a single string
delim Optional delimiter of array values. If omitted it is expected that arrays are pro-
vided in exploded form (e.g. arg1=3&arg1=7)
Value

A named list giving the keys and values of the query. Values fron the same key are combined if
given multiple times

random_key 11

Examples

Using delimiter to provide array
query_parser("?name=Thomas+Lin+Pedersen&numbers=1%202%203", delim = " ")

No delimiter (exploded form)
query_parser (" ?name=Thomas%20L1in%20Pedersen&numbers=1&numbers=2&numbers=3")

random_key Generate a random key compatible with encryption and decryption in
requests and responses

Description

The encryption/decryption used in reqres is based on the sodium package and requires a 32-bit en-
cryption key encoded as hexadecimal values. While you can craft your own, this function will take
care of creating a compliant key using a cryptographically secure pseudorandom number generator
from sodium: :helpers().

Usage

random_key ()

Details

Keep your encryption keys safe! Anyone with the key will be able to eavesdrop on your commu-
nication and tamper with the information stored in encrypted cookies through man-in-the-middle
attacks. The best approach is to use the keyring package to manage your keys, but as an alternative
you can store it as environment variables.

NEVER STORE THE KEY IN PLAIN TEXT.

NEVER PUT THE KEY SOMEWHERE WHERE IT CAN ACCIDENTALLY BE COMMIT-
TED TO GIT OR OTHER VERSION CONTROL SOFTWARE

Value

A 32-bit key as a hex-encoded string

Examples

Store a key with keyring and use it
keyring: :key_set_with_value("reqres_key"”, random_key())

rook <- fiery::fake_request("http://example.com")

Request$new(rook, key = keyring::key_get("reqres_key"))

https://github.com/r-lib/sodium

12 Request

Request HTTP Request Handling

Description

This class wraps all functionality related to extracting information from a http request. Much of
the functionality is inspired by the Request class in Express.js, so the documentation for this will
complement this document. As reqres is build on top of the Rook specifications the Request
object is initialized from a Rook-compliant object. This will often be the request object provided by
the httpuv framework. While it shouldn’t be needed, the original Rook object is always accessible
and can be modified, though any modifications will not propagate to derived values in the Request
object (e.g. changing the HTTP_HOST element of the Rook object will not change the host field of the
Request object). Because of this, direct manipulation of the Rook object is generally discouraged.

Usage

as.Request(x, ...)

is.Request(x)

Arguments
X An object coercible to a Request.
Parameters passed on to Request$new()
Value

A Request object (for as.Request()) or a logical indicating whether the object is a Request (for
is.Request())

Initialization
A new 'Request’-object is initialized using the new() method on the generator:

Usage

req <- Request$new(rook, trust = FALSE)

Active bindings
trust A logical indicating whether the request is trusted. Mutable
method A string indicating the request method (in lower case, e.g. *get’, ’put’, etc.). Immutable

body An object holding the body of the request. This is an empty string by default and needs to be
populated using the set_body () method (this is often done using a body parser that accesses
the Rook$input stream). Immutable

https://expressjs.com/en/4x/api.html#req
https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

Request 13

session The content of the session cookie. If session cookies has not been activated it will be an
empty write-protected list. If session cookies are activated but the request did not contain one
it will be an empty list. The content of this field will be send encrypted as part of the response
according to the cookie settings in $session_cookie_settings. This field is reflected in the
Response$session field and using either produces the same result

has_session_cookie Query whether the request came with a session cookie Immutable

session_cookie_settings Get the settings for the session cookie as they were provided during
initialisation cookie Immutable

has_key Query whether the request was initialised with an encryption key Immutable
compression_limit Query the compression limit the request was initialized with Immutable

cookies Access a named list of all cookies in the request. These have been URI decoded. Im-
mutable

headers Access a named list of all headers in the request. In order to follow R variable naming
standards - have been substituted with _. Use the get_header () method to lookup based on
the correct header name. Immutable

host Return the domain of the server given by the "Host" header if trust == FALSE. If trust ==
true returns the X-Forwarded-Host instead. Immutable

ip Returns the remote address of the request if trust == FALSE. If trust == TRUE it will instead
return the first value of the X-Forwarded-For header. Immutable

ips If trust == TRUE it will return the full list of ips in the X-Forwarded-For header. If trust ==
FALSE it will return an empty vector. Immutable

protocol Returns the protocol (e.g. http’) used for the request. If trust == TRUE it will use the
value of the X-Forwarded-Proto header. Immutable

root The mount point of the application receiving this request. Can be empty if the application is
mounted on the server root. Immutable

path The part of the url following the root. Defines the local target of the request (independent of
where it is mounted). Immutable

url The full URL of the request. Immutable

query The query string of the request (anything following "?" in the URL) parsed into a named list.
The query has been url decoded and "+" has been substituted with space. Multiple queries are
expected to be separated by either "&" or "I". Immutable

query_delim The delimiter used for specifying multiple values in a query. If NULL then queries are
expected to contain multiple key-value pairs for the same key in order to provide an array, e.g.
?argl=3&argi1=7. If setting it to ","", "|", or " " then an array can be provided in a single
key-value pair, e.g. ?arg1=3|7

querystring The unparsed query string of the request, including "?". If no query string exists it
will be "" rather than "?"

xhr A logical indicating whether the X-Requested-With header equals XMLHttpRequest thus in-
dicating that the request was performed using JavaScript library such as jQuery. Immutable

secure A logical indicating whether the request was performed using a secure connection, i.e.
protocol == "https'. Immutable

origin The original object used to create the Request object. As reqres currently only works
with rook this will always return the original rook object. Changing this will force the request
to reparse itself.

14 Request

response If a Response object has been created for this request it is accessible through this field.
Immutable

locked Set the 1ocked status on the request. This flag does not result in any different behaviour in
the request but can be used by frameworks to signal that the request should not be altered in
some way

response_headers The list of headers the response is prepopulated with Immutable

Methods

Public methods:

* Request$new()

¢ Request$print()

* Request$set_body()

* Request$set_cookies()

* Request$accepts()

e Request$accepts_charsets()
* Request$accepts_encoding()
* Request$accepts_language()
* Request$is()

* Request$get_header()

¢ Request$has_header ()

* Request$respond()

* Request$parse()

* Request$parse_raw()

* Request$as_message()

* Request$encode_string()

* Request$decode_string()

* Request$clear()

* Request$forward()

* Request$clone()

Method new(): Create a new request from a rook object

Usage:

Request$new(
rook,
trust = FALSE,
key = NULL,
session_cookie = NULL,
compression_limit = 0,
query_delim = NULL,
response_headers = list()

)

Arguments:

rook The rook object to base the request on

https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

Request 15

trust Is this request trusted blindly. If TRUE X-Forwarded-* headers will be returned when
querying host, ip, and protocol

key A 32-bit secret key as a hex encoded string or a raw vector to use for $encode_string()
and $decode_string() and by extension to encrypt a session cookie. It must be given to
turn on session cookie support. A valid key can be generated using random_key (). NEVER
STORE THE KEY IN PLAIN TEXT. Optimalle use the keyring package to store it or set it
as an environment variable

session_cookie Settings for the session cookie created using session_cookie(). Will be
ignored if key is not provided to ensure session cookies are properly encrypted

compression_limit The size threshold in bytes for trying to compress the response body (it
is still dependant on content negotiation)

query_delim The delimiter to split array-type query arguments by

response_headers A list of headers the response should be prepopulated with. All names
must be in lower case and all elements must be character vectors. This is not checked but
assumed

Method print(): Pretty printing of the object
Usage:
Request$print(...)

Arguments:

. ignored

Method set_body(): Sets the content of the request body. This method should mainly be used
in concert with a body parser that reads the rook$input stream

Usage:

Request$set_body(content)

Arguments:

content An R object representing the body of the request

Method set_cookies(): Sets the cookies of the request. The cookies are automatically parsed
and populated, so this method is mainly available to facilitate cookie signing and encryption

Usage:
Request$set_cookies(cookies)
Arguments:

cookies A named list of cookie values

Method accepts(): Given a vector of response content types it returns the preferred one based
on the Accept header.

Usage:
Request$accepts(types)
Arguments:

types A vector of types

Method accepts_charsets(): Given a vector of possible character encodings it returns the
preferred one based on the Accept-Charset header.

16 Request

Usage:
Request$accepts_charsets(charsets)

Arguments:
charsets A vector of charsets

Method accepts_encoding(): Given a vector of possible content encodings (usually compres-
sion algorithms) it selects the preferred one based on the Accept-Encoding header. If there is no

match it will return "identity" signaling no compression.

Usage:
Request$accepts_encoding(encoding)

Arguments:
encoding A vector of encoding names

Method accepts_language(): Given a vector of possible content languages it selects the best
one based on the Accept-Language header.

Usage:
Request$accepts_language(language)

Arguments:
language A vector of languages

Method is(): Queries whether the body of the request is in a given format by looking at the
Content-Type header. Used for selecting the best parsing method.

Usage:

Request$is(type)

Arguments:
type A vector of content types to check for. Can be fully qualified MIME types, a file extension,

or a mime type with wildcards
Method get_header(): Get the header of the specified name.

Usage:
Request$get_header (name)

Arguments:
name The name of the header to get

Method has_header(): Test for the existence of any header given by name

Usage:
Request$has_header (name)

Arguments:
name The name of the header to look for

Method respond(): Creates a new Response object from the request

Usage:
Request$respond()

Request 17

Method parse(): Based on provided parsers it selects the appropriate one by looking at the
Content-Type header and assigns the result to the request body. A parser is a function accepting
a raw vector, and a named list of additional directives, and returns an R object of any kind (if
the parser knows the input to be plain text, simply wrap it in rawToChar()). If the body is
compressed, it will be decompressed based on the Content-Encoding header prior to passing it
on to the parser. See parsers for a list of pre-supplied parsers. Parsers are either supplied in a
named list or as named arguments to the parse method. The names should correspond to mime
types or known file extensions. If autofail = TRUE the response will throw an appropriate abort
code if failing to parse the body. parse() returns TRUE if parsing was successful and FALSE if not

Usage:

Request$parse(..., autofail = TRUE)

Arguments:

. A named set of parser functions
autofail Automatically populate the response if parsing fails

Method parse_raw(): This is a simpler version of the parse() method. It will attempt to
decompress the body and set the body field to the resulting raw vector. It is then up to the server
to decide how to handle the payload. It returns TRUE if successful and FALSE otherwise.

Usage:

Request$parse_raw(autofail = TRUE)

Arguments:

autofail Automatically populate the response if parsing fails

Method as_message(): Prints a HTTP representation of the request to the output stream.
Usage:
Request$as_message()

Method encode_string(): base64-encode a string. If a key has been provided during initial-
isation the string is first encrypted and the final result is a combination of the encrypted text and
the nonce, both base64 encoded and combined witha "_".

Usage:

Request$encode_string(val)

Arguments:

val A single string to encrypt

Method decode_string(): base64-decodes a string. If a key has been provided during initial-
isation the input is first split by ”_" and then the two parts are base64 decoded and decrypted. Oth-
erwise the input is base64-decoded as-is. It will always hold that val == decode_string(encode_string(val)).
Usage:
Request$decode_string(val)
Arguments:
val A single string to encrypt

Method clear(): Clears the content of the request and, if created, the related response. This
method exists only to allow reuse of the request and response object to save a few milliseconds in
latency. Use with caution and see e.g. how fiery maintains a poll of request objects

18

Request

Usage:
Request$clear()

Method forward(): Forward a request to a new url, optionally setting different headers, queries,
etc. Uses curl and mirai under the hood and returns a promise
Usage:
Request$forward(
url,
query = NULL,
method = NULL,
headers = NULL,
body = NULL,
return = NULL,

)

Arguments:
url The url to forward to

query Optional querystring to append to url. If NULL the query string of the current request
will be used

method The HTTP method to use. If NULL the method of the current request will be used

headers A list of headers to add to the headers of the current request. You can remove a header
from the current request by setting it to NULL here

body The body to send with the forward. If NULL the body of the current request will be used

return A function that takes in the fulfilled response object and whose return value is returned
by the promise
. ignored

Method clone(): The objects of this class are cloneable with this method.
Usage:
Request$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Response for handling http responses

Examples

fake_rook <- fiery::fake_request(

)

"http://example.com/test?id=34632&question=who+is+hadley’,
content = 'This is an elaborate ruse',
headers = list(
Accept = 'application/json; text/*',
Content_Type = 'text/plain'
)

Response 19

req <- Request$new(fake_rook)

Get full URL
req$url

Get list of query parameters
reg$query

Test if content is text
req$is('txt")

Perform content negotiation for the response
req$accepts(c('html', 'json', 'txt'))

Cleaning up connections
rm(fake_rook, req)
gcO

Response HTTP Response handling

Description

This class handles all functionality involved in crafting a http response. Much of the functional-
ity is inspired by the Request class in Express.js, so the documentation for this will complement
this document. As reqgres is build on top of the Rook specifications the Response object can be
converted to a compliant list object to be passed on to e.g. the httpuv handler. A Response ob-
ject is always created as a response to a Request object and contains a reference to the originating
Request object. A Response is always initialized with a 404 Not Found code, an empty string as
body and the Content-Type header set to text/plain. As the Content-Type header is required
for httpuv to function, it will be inferred if missing when converting to a list. If the body is a raw
vector it will be set to application/octet-stream and otherwise it will be set to text/plain. It
is always advised to consciously set the Content-Type header though. The only exception is when
attaching a standard file where the type is inferred from the file extension automatically. Unless the
body is a raw vector it will automatically be converted to a character vector and collapsed to a single
string with "\n" separating the individual elements before the Response object is converted to a list
(that is, the body can exist as any type of object up until the moment where the Response object is
converted to a list). To facilitate communication between different middleware the Response object
contains a data store where information can be stored during the lifetime of the response.

Usage

S3 method for class 'Response'’
as.list(x, ...)

is.Response(x)

https://expressjs.com/en/4x/api.html#res
https://github.com/jeffreyhorner/Rook/blob/a5e45f751/README.md

20 Response

Arguments
X A Response object
Ignored
Value

A rook-compliant list-response (in case of as.1list()) or a logical indicating whether the object is
a Response (in case of is.Response())

Initialization

A new ’Response’-object is initialized using the new() method on the generator:

Usage

res <- Response$new(request)

But often it will be provided by the request using the respond() method, which will provide the
response, creating one if it doesn’t exist

Usage
res <- request$respond()
Arguments
request The Request object that the Response is responding to
Fields

The following fields are accessible in a Response object:

status Gets or sets the status code of the response. Is initialised with 404L

body Set or get he body of the response. If it is a character vector with a single element named
'file' it will be interpreted as the location of a file. It is better to use the file field for
creating a response referencing a file as it will automatically set the correct headers.

file Set or get the location of a file that should be used as the body of the response. If the body
is not referencing a file (but contains something else) it will return NULL. The Content-Type
header will automatically be inferred from the file extension, if known. If unknown it will
defaults to application/octet-stream. If the file has no extension it will be text/plain.
Existence of the file will be checked.

type Get or sets the Content-Type header of the response based on a file extension or mime-type.

request Get the original Request object that the object is responding to.

Response 21

Active bindings

status Gets or sets the status code of the response. Is initialised with 404L

body Set or get he body of the response. If it is a character vector with a single element named
'file' it will be interpreted as the location of a file. It is better to use the file field for
creating a response referencing a file as it will automatically set the correct headers.

file Set or get the location of a file that should be used as the body of the response. If the body
is not referencing a file (but contains something else) it will return NULL. The Content-Type
header will automatically be inferred from the file extension, if known. If unknown it will
defaults to application/octet-stream. If the file has no extension it will be text/plain.
Existence of the file will be checked.

type Get or sets the Content-Type header of the response based on a file extension or mime-type.
request Get the original Request object that the object is responding to.

formatter Get the registered formatter for the response body.

is_formatted Has the body been formatted

data_store Access the environment that holds the response data store

session The content of the session cookie. If session cookies has not been activated it will be an
empty write-protected list. If session cookies are activated but the request did not contain one
it will be an empty list. The content of this field will be send encrypted as part of the response
according to the cookie settings in $session_cookie_settings. This field is reflected in the
Request$session field and using either produces the same result

session_cookie_settings Get the settings for the session cookie as they were provided during
initialisation of the request cookie Immutable

has_key Query whether the request was initialised with an encryption key Immutable

Methods
Public methods:

¢ Response$new()

* Response$print()

* Response$set_header()

* Response$get_header ()

* Response$remove_header()
* Response$has_header()

* Response$append_header()
* Response$set_data()

* Response$get_data()

¢ Response$remove_data()

* Response$has_data()

* Response$timestamp()

* Response$attach()

* Response$as_download()

* Response$status_with_text()

22

Response

¢ Response$problem()

* Response$set_cookie()

* Response$remove_cookie()
* Response$clear_cookie()
¢ Response$has_cookie()

* Response$set_links()

* Response$format ()

* Response$set_formatter()
* Response$compress()

* Response$content_length()
* Response$as_list()

* Response$as_message()

* Response$encode_string()
* Response$decode_string()
¢ Response$reset()

* Response$clone()

Method new(): Create a new response from a Request object
Usage:
Response$new(request)
Arguments:

request The Request object that the Response is responding to

Method print(): Pretty printing of the object
Usage:
Response$print(...)
Arguments:

. ignored

Method set_header(): Sets the header given by name. value will be converted to character.
A header will be added for each element in value. Use append_header() for setting headers
without overwriting existing ones.

Usage:

Response$set_header(name, value)
Arguments:

name The name of the header to set
value The value to assign to the header

Method get_header(): Returns the header(s) given by name
Usage:
Response$get_header (name)

Arguments:

name The name of the header to retrieve the value for

Response 23

Method remove_header(): Removes all headers given by name

Usage:
Response$remove_header (name)

Arguments:
name The name of the header to remove

Method has_header(): Test for the existence of any header given by name

Usage:
Response$has_header (name)

Arguments:
name The name of the header to look for
Adds an additional header given by name with the value given by

Method append_header():
value. If the header does not exist yet it will be created.

Usage:
Response$append_header(name, value)

Arguments:
name The name of the header to append to

value The value to assign to the header

Method set_data(): Adds value to the internal data store and stores it with key

Usage:
Response$set_data(key, value)

Arguments:
key The identifier of the data you set

value An R object

Method get_data(): Retrieves the data stored under key in the internal data store.

Usage:
Response$get_data(key)

Arguments:
key The identifier of the data you wish to retrieve

Method remove_data(): Removes the data stored under key in the internal data store.

Usage:
Response$remove_data(key)

Arguments:
key The identifier of the data you wish to remove

Method has_data(): Queries whether the data store has an entry given by key

Usage:
Response$has_data(key)

24

Response

Arguments:
key The identifier of the data you wish to look for

Method timestamp(): Set the Date header to the current time

Usage:
Response$timestamp()

Method attach(): Sets the body to the file given by file and marks the response as a download
by setting the Content-Disposition to attachment; filename=<filename>. Use the type
argument to overwrite the automatic type inference from the file extension.

Usage:

Response$attach(file, filename = basename(file), type = NULL)

Arguments:

file The path to a file

filename The name of the file as it will appear to the client

type The file type. If not given it will be inferred

Method as_download(): Marks the response as a downloadable file, rather than data to be
shown in the browser

Usage:

Response$as_download(filename = NULL)

Arguments:

filename Optional filename as hint for the client

Method status_with_text(): Sets the status to code and sets the body to the associated status
code description (e.g. Bad Gateway for 502L)

Usage:

Response$status_with_text(code, clear_headers = FALSE)

Arguments:

code The status code to set

clear_headers Should all currently set headers be cleared (useful for converting a response to
an error halfway through processing)

Method problem(): Signals an API problem using the HTTP Problems spec RFC 9457. This
should only be used in cases where returning a bare response code is insufficient to describe the
issue.

Usage:
Response$problem(
code,
detail,
title = NULL,
type = NULL,

instance = NULL,
clear_headers = TRUE

https://datatracker.ietf.org/doc/html/rfc9457

Response 25

Arguments:

code The HTTP status code to use

detail A string detailing the problem. Make sure the information given does not pose a secu-
rity risk

title A human-readable title of the issue. Should not vary from instance to instance of the
specific issue. If NULL then the status code title is used

type A URI that uniquely identifies this type of problem. The URI must resolve to an HTTP
document describing the problem in human readable text. If NULL, the most recent link to
the given status code definition is used

instance A unique identifier of the specific instance of this problem that can be used for further
debugging. Can be omitted.

clear_headers Should all currently set headers be cleared

Method set_cookie(): Sets a cookie on the response. See https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Set-Cookie for a longer description
Usage:
Response$set_cookie(
name,
value,
encode = TRUE,
expires = NULL,
http_only = NULL,
max_age = NULL,
path = NULL,
secure = NULL,
same_site = NULL
)
Arguments:
name The name of the cookie
value The value of the cookie
encode Should value be url encoded
expires A POSIXct object given the expiration time of the cookie
http_only Should the cookie only be readable by the browser
max_age The number of seconds to elapse before the cookie expires
path The URL path this cookie is related to
secure Should the cookie only be send over https

same_site Fither "Lax", "Strict”, or "None" indicating how the cookie can be send during
cross-site requests. If this is set to "None" then secure must also be set to TRUE

Method remove_cookie(): Removes the cookie named name from the response.
Usage:
Response$remove_cookie(name)
Arguments:

name The name of the cookie to remove

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

26

Response

Method clear_cookie(): Request the client to delete the given cookie

Usage:
Response$clear_cookie(name)

Arguments:

name The name of the cookie to delete

Method has_cookie(): Queries whether the response contains a cookie named name

Usage:
Response$has_cookie(name)

Arguments:

name The name of the cookie to look for

Method set_links(): Sets the Link header based on the named arguments passed to The
names will be used for the rel directive.

Usage:

Response$set_links(...)

Arguments:

. key-value pairs for the links

Method format(): Based on the formatters passed in through ... content negotiation is per-
formed with the request and the preferred formatter is chosen and applied. The Content-Type
header is set automatically. If compress = TRUE the compress() method will be called after for-
matting. If an error is encountered and autofail = TRUE the response will be set to 500. If a
formatter is not found and autofail = TRUE the response will be set to 406. If formatting is
successful it will return TRUE, if not it will return FALSE

Usage:
Response$format(..., autofail = TRUE, compress = TRUE, default = NULL)

Arguments:

. A range of formatters
autofail Automatically populate the response if formatting fails
compress Should $compress() be run in the end

default The name of the default formatter, which will be used if none match. Setting this will
avoid autofailing with 406 as a formatter is always selected

Method set_formatter(): Based on the formatters passed in through . .. content negotiation
is performed with the request and the preferred formatter is chosen. The Content-Type header
is set automatically. If a formatter is not found and autofail = TRUE the response will be set to
406. The found formatter is registered with the response and will be applied just before handing
off the response to httpuv, unless the response has been manually formatted.

Usage:
Response$set_formatter(..., autofail = TRUE, default = NULL)
Arguments:

. A range of formatters

Response 27

autofail Automatically populate the response if formatting fails

default The name of the default formatter, which will be used if none match. Setting this will
avoid autofailing with 406 as a formatter is always selected

Method compress(): Based on the provided priority, an encoding is negotiated with the request
and applied. The Content-Encoding header is set to the chosen compression algorithm.
Usage:
Response$compress(
priority = c("gzip"”, "deflate”, "br", "identity"),
force = FALSE,
limit = NULL
)
Arguments:
priority A vector of compression types ranked by the servers priority
force Should compression be done even if the type is known to be uncompressible
limit The size limit in bytes for performing compression. If NULL then the compression_limit
setting from the initialization of the request is used

Method content_length(): Calculates the length (in bytes) of the body. This is the number that
goes into the Content-Length header. Note that the Content-Length header is set automatically
by httpuv so this method should only be called if the response size is needed for other reasons.
Usage:
Response$content_length()

Method as_list(): Converts the object to a list for further processing by a Rook compliant
server such as httpuv. Will set Content-Type header if missing and convert a non-raw body to
a single character string. Will apply the formatter set by set_formatter() unless the body has
already been formatted. Will add a Date header if none exist.

Usage:

Response$as_list()

Method as_message(): Prints a HTTP representation of the response to the output stream.

Usage:
Response$as_message()

Method encode_string(): base64-encode a string. If a key has been provided during initial-
isation the string is first encrypted and the final result is a combination of the encrypted text and
the nonce, both base64 encoded and combined witha "_".

Usage:
Response$encode_string(val)
Arguments:

val A single string to encrypt

Method decode_string(): base64-decodes a string. If a key has been provided during initial-
isation the input is first split by ”_" and then the two parts are base64 decoded and decrypted. Oth-

erwise the input is base64-decoded as-is. It will always hold that val == decode_string(encode_string(val)).

28 Response

Usage:
Response$decode_string(val)

Arguments:

val A single string to encrypt
Method reset(): Resets the content of the response. Is mainly used by the clear () method of
the associated request, and should seldom be called directly

Usage:

Response$reset ()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Response$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Request for handling http requests

Examples

fake_rook <- fiery::fake_request(
"http://example.com/test?id=34632&question=who+is+hadley’,

content = 'This is elaborate ruse',
headers = list(
Accept = 'application/json; text/*',
Content_Type = 'text/plain’
)

)

req <- Request$new(fake_rook)
res <- Response$new(req)
res

Set the body to the associated status text
res$status_with_text(200L)
res$body

Infer Content-Type from file extension
res$type <- 'json'
res$type

Prepare a file for download
res$attach(system.file('DESCRIPTION', package = 'reqres'))
res$type

res$body

res$get_header('Content-Disposition')

session_cookie 29

Cleaning up connections
rm(fake_rook, req, res)
gcO)

session_cookie Collect settings for a session cookie

Description

A session cookie is just like any other cookie, but reqres treats this one different, parsing it’s value
and making it available in the $session field. However, the same settings as any other cookies
applies and can be given during request initialisation using this function.

Usage

session_cookie(
name = "reqres”,
expires = NULL,
max_age = NULL,
path = NULL,
secure = NULL,
same_site = NULL

is_session_cookie_settings(x)

Arguments
name The name of the cookie
expires A POSIXct object given the expiration time of the cookie
max_age The number of seconds to elapse before the cookie expires
path The URL path this cookie is related to
secure Should the cookie only be send over https
same_site Either "Lax", "Strict”, or "None" indicating how the cookie can be send dur-
ing cross-site requests. If this is set to "None"” then secure must also be set to
TRUE
X An object to test
Value

A session_cookie_settings object that can be used during request initialisation. Can be cached
and reused for all requests in a server

30 to_http_date

Note

As opposed to regular cookies the session cookie is forced to be HTTP only which is why this
argument is missing.

Examples
session_cookie <- session_cookie()
rook <- fiery::fake_request("http://example.com”)

A key must be provided for session_cookie to be used
Request$new(rook, key = random_key(), session_cookie = session_cookie)

to_http_date Format timestamps to match the HITP specs

Description

Dates/times in HTTP headers needs a specific format to be valid, and is furthermore always given
in GMT time. These two functions aids in converting back and forth between the required format.

Usage
to_http_date(time, format = NULL)

from_http_date(time)

Arguments
time A string or an object coercible to POSIXct
format In case time is not a POSIXct object a specification how the string should be
interpreted.
Value

to_http_date() returns a properly formatted string, while from_http_date() returns a POSIXct
object

Examples
time <- to_http_date(Sys.time())
time
from_http_date(time)

Index

x datasets
default_formatters, 4
default_parsers, 5

abort_bad_request (abort_http_problem),
2
abort_conflict (abort_http_problem), 2
abort_forbidden (abort_http_problem), 2
abort_gone (abort_http_problem), 2
abort_http_problem, 2
abort_internal_error
(abort_http_problem), 2
abort_method_not_allowed
(abort_http_problem), 2
abort_not_acceptable
(abort_http_problem), 2
abort_not_found (abort_http_problem), 2
abort_status (abort_http_problem), 2
abort_unauthorized
(abort_http_problem), 2
as.list.Response (Response), 19
as.Request (Request), 12

default_formatters, 4, 7
default_parsers, 5, 10

flatten(), 9

format_html (formatters), 6
format_json (formatters), 6
format_plain (formatters), 6
format_table (formatters), 6
format_xml (formatters), 6
formatters, 5, 6, 10
from_http_date (to_http_date), 30

handle_problem (abort_http_problem), 2
10,7

is.Request (Request), 12
is.Response (Response), 19

31

is_reqres_problem (abort_http_problem),
2

is_session_cookie_settings
(session_cookie), 29

local_use_cli(), 4

parse_html (parsers), 8
parse_json (parsers), 8
parse_multiform(parsers), 8
parse_plain (parsers), 8
parse_queryform (parsers), 8
parse_table (parsers), 8
parse_xml (parsers), 8
parsers, 5, 7,8, 17

query_parser, 10

random_key, 11
random_key (), 15
rawToChar(), 17
read. table(), 9
Request, 12, 28
Response, 18, 19
rlang::error_cnd, 4

session_cookie, 29
session_cookie(), 15

to_http_date, 30
trace_back(), 4

unbox (), 7

write.table(),7

	abort_http_problem
	default_formatters
	default_parsers
	formatters
	parsers
	query_parser
	random_key
	Request
	Response
	session_cookie
	to_http_date
	Index

